226 research outputs found
The use of cone beam computed tomographic imaging in a paediatric dentistry department
Abstract
Cone beam computed tomography (CBCT) is an emerging radiographic imaging modality. The diagnostic benefit must exceed the individual detriment that its generally higher radiation exposure may cause. Since limited studies exist on the use and impact of CBCT in paediatric dentistry, a service evaluation was carried out to explore the reasons for CBCT referral and to identify its impact on the treatment plan and/or management in a paediatric dentistry department. Clinical records for all paediatric patients who underwent a CBCT were reviewed, to identify the reason for referral and its influence on diagnosis or management, by comparing the provisional treatment plan with the definitive treatment plan, post-CBCT. A total of 130 paediatric patients underwent CBCT in a 12-month period, of which 52 satisfied the inclusion criteria. CBCTs were most commonly requested for the localisation of unerupted/impacted teeth 14/52 (27%), assessment of supernumerary teeth 12/52 (23%), and to investigate root resorption 9/52 (17%). All CBCTs provided additional information that assisted treatment planning, diagnosis, or management and, most significantly, 16/52 (31%) of treatment plans were changed based on CBCT findings. All CBCTs requested in this study were justified and confirmed or influenced the management of paediatric patients, ultimately reducing the risk of complications and further treatment
Effects of communication and utility-based decision making in a simple model of evacuation
We present a simple cellular automaton based model of decision making during
evacuation. Evacuees have to choose between two different exit routes,
resulting in a strategic decision making problem. Agents take their decisions
based on utility functions, these can be revised as the evacuation proceeds,
leading to complex interaction between individuals and to jamming transitions.
The model also includes the possibility to communicate and exchange information
with distant agents, information received may affect the decision of agents. We
show that under a wider range of evacuation scenarios performance of the model
system as a whole is optimal at an intermediate fraction of evacuees with
access to communication.Comment: 9 pages, 9 figure
Pedestrian Traffic: on the Quickest Path
When a large group of pedestrians moves around a corner, most pedestrians do
not follow the shortest path, which is to stay as close as possible to the
inner wall, but try to minimize the travel time. For this they accept to move
on a longer path with some distance to the corner, to avoid large densities and
by this succeed in maintaining a comparatively high speed. In many models of
pedestrian dynamics the basic rule of motion is often either "move as far as
possible toward the destination" or - reformulated - "of all coordinates
accessible in this time step move to the one with the smallest distance to the
destination". Atop of this rule modifications are placed to make the motion
more realistic. These modifications usually focus on local behavior and neglect
long-ranged effects. Compared to real pedestrians this leads to agents in a
simulation valuing the shortest path a lot better than the quickest. So, in a
situation as the movement of a large crowd around a corner, one needs an
additional element in a model of pedestrian dynamics that makes the agents
deviate from the rule of the shortest path. In this work it is shown, how this
can be achieved by using a flood fill dynamic potential field method, where
during the filling process the value of a field cell is not increased by 1, but
by a larger value, if it is occupied by an agent. This idea may be an obvious
one, however, the tricky part - and therefore in a strict sense the
contribution of this work - is a) to minimize unrealistic artifacts, as naive
flood fill metrics deviate considerably from the Euclidean metric and in this
respect yield large errors, b) do this with limited computational effort, and
c) keep agents' movement at very low densities unaltered
Spatially and Financially Explicit Population Viability Analysis of Maculinea alcon in The Netherlands
Background The conservation of species structured in metapopulations involves an important dilemma of resource allocation: should investments be directed at restoring/enlarging habitat patches or increasing connectivity. This is still an open question for Maculinea species despite they are among the best studied and emblematic butterfly species, because none of the population dynamics models developed so far included dispersal. Methodology/Principal Findings We developed the first spatially and financially explicit Population Viability Analysis model for Maculinea alcon, using field data from The Netherlands. Implemented using the RAMAS/GIS platform, the model incorporated both local (contest density dependence, environmental and demographic stochasticities), and regional population dynamics (dispersal rates between habitat patches). We selected four habitat patch networks, contrasting in several basic features (number of habitat patches, their quality, connectivity, and occupancy rate) to test how these features are affecting the ability to enhance population viability of four basic management options, designed to incur the same costs: habitat enlargement, habitat quality improvement, creation of new stepping stone habitat patches, and reintroduction of captive-reared butterflies. The PVA model was validated by the close match between its predictions and independent field observations on the patch occupancy pattern. The four patch networks differed in their sensitivity to model parameters, as well as in the ranking of management options. Overall, the best cost-effective option was enlargement of existing habitat patches, followed by either habitat quality improvement or creation of stepping stones depending on the network features. Reintroduction was predicted to generally be inefficient, except in one specific patch network. Conclusions/Significance Our results underline the importance of spatial and regional aspects (dispersal and connectivity) in determining the impact of conservation actions, even for a species previously considered as sedentary. They also illustrate that failure to account for the cost of management scenarios can lead to very different conclusions
- …