96 research outputs found

    A mitochondrial mutator plasmid that causes senescence under dietary restricted conditions

    Get PDF
    BACKGROUND: Calorie or dietary restriction extends life span in a wide range of organisms including the filamentous fungus Podospora anserina. Under dietary restricted conditions, P. anserina isolates are several-fold longer lived. This is however not the case in isolates that carry one of the pAL2-1 homologous mitochondrial plasmids. RESULTS: We show that the pAL2-1 homologues act as 'insertional mutators' of the mitochondrial genome, which may explain their negative effect on life span extension. Sequencing revealed at least fourteen unique plasmid integration sites, of which twelve were located within the mitochondrial genome and two within copies of the plasmid itself. The plasmids were able to integrate in their entirety, via a non-homologous mode of recombination. Some of the integrated plasmid copies were truncated, which probably resulted from secondary, post-integrative, recombination processes. Integration sites were predominantly located within and surrounding the region containing the mitochondrial rDNA loci. CONCLUSION: We propose a model for the mechanism of integration, based on innate modes of mtDNA recombination, and discuss its possible link with the plasmid's negative effect on dietary restriction mediated life span extension

    A single zinc finger optimizes the DNA interactions of the nucleocapsid protein of the yeast retrotransposon Ty3

    Get PDF
    Reverse transcription in retroviruses and retrotransposons requires nucleic acid chaperones, which drive the rearrangement of nucleic acid conformation. The nucleic acid chaperone properties of the human immunodeficiency virus type-1 (HIV-1) nucleocapsid (NC) protein have been extensively studied, and nucleic acid aggregation, duplex destabilization and rapid binding kinetics have been identified as major components of its activity. However, the properties of other nucleic acid chaperone proteins, such as retrotransposon Ty3 NC, a likely ancestor of HIV-1 NC, are not well understood. In addition, it is unclear whether a single zinc finger is sufficient to optimize the properties characteristic of HIV-1 NC. We used single-molecule DNA stretching as a method for detailed characterization of Ty3 NC chaperone activity. We found that wild type Ty3 NC aggregates single- and double-stranded DNA, weakly stabilizes dsDNA, and exhibits rapid binding kinetics. Single-molecule studies in the presence of Ty3 NC mutants show that the N-terminal basic residues and the unique zinc finger at the C-terminus are required for optimum chaperone activity in this system. While the single zinc finger is capable of optimizing Ty3 NC's DNA interaction kinetics, two zinc fingers may be necessary in order to facilitate the DNA destabilization exhibited by HIV-1 NC

    The population biology and evolutionary significance of Ty elements in Saccharomyces cerevisiae

    Full text link
    The basic structure and properties of Ty elements are considered with special reference to their role as agents of evolutionary change. Ty elements may generate genetic variation for fitness by their action as mutagens, as well as by providing regions of portable homology for recombination. The mutational spectra generated by Ty 1 transposition events may, due to their target specificity and gene regulatory capabilities, possess a higher frequency of adaptively favorable mutations than spectra resulting from other types of mutational processes. Laboratory strains contain between 25–35 elements, and in both these and industrial strains the insertions appear quite stable. In contrast, a wide variation in Ty number is seen in wild isolates, with a lower average number/genome. Factors which may determine Ty copy number in populations include transposition rates (dependent on Ty copy number and mating type), and stabilization of Ty elements in the genome as well as selection for and against Ty insertions in the genome. Although the average effect of Ty transpositions are deleterious, populations initiated with a single clone containing a single Ty element steadily accumulated Ty elements over 1,000 generations. Direct evidence that Ty transposition events can be selectively favored is provided by experiments in which populations containing large amounts of variability for Ty1 copy number were maintained for ∼100 generations in a homogeneous environment. At their termination, the frequency of clones containing 0 Ty elements had decreased to ∼0.0, and the populations had became dominated by a small number of clones containing >0 Ty elements. No such reduction in variability was observed in populations maintained in a structured environment, though changes in Ty number were observed. The implications of genetic (mating type and ploidy) changes and environmental fluctuations for the long-term persistence of Ty elements within the S. cerevisiae species group are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42799/1/10709_2004_Article_BF00133718.pd

    Redundant contribution of a Transient Receptor Potential cation channel Member 1 exon 11 single nucleotide polymorphism to equine congenital stationary night blindness

    No full text
    BACKGROUND: Congenital stationary night-blindness (CSNB) is a recessive autosomal defect in low-light vision in Appaloosa and other horse breeds. This condition has been mapped by linkage analysis to a gene coding for the Transient Receptor Potential cation channel Member 1 (TRPM1). TRPM1 is normally expressed in the ON-bipolar cells of the inner nuclear layer of the retina. Down-regulation of TRPM1 expression in CSNB results from a transposon-like insertion in intron 1 of the TRPM1 gene. Stop transcription signals in this transposon significantly reduce TRPM1 primary transcript levels in CSNB horses. This study describes additional contributions by a second mutation of the TRPM1 gene, the ECA1 108,249,293 C > T SNP, to down-regulation of transcription of the TRPM1 gene in night-blind horses. This TRPM1 SNP introduces a consensus binding site for neuro-oncological ventral antigen 1 (Nova-1) protein in the primary transcript. Nova-1 binding disrupts normal splicing signals, producing unstable, non-functional mRNA transcripts. RESULTS: Retinal bipolar cells express both TRPM1 and Nova-1 proteins. In vitro addition of Nova-1 protein retards electrophoretic migration of TRPM1 RNA containing the ECA1 108,249,293 C > T SNP. Up-regulating Nova-1 expression in primary cultures of choroidal melanocytes carrying the intron 11 SNP caused an average log 2-fold reduction of ~6 (64-fold) of TRPM1 mRNA expression. CONCLUSIONS: These finding suggest that the equine TRPM1 SNP can act independently to reduce survival of TRPM1 mRNA escaping the intron 1 transcriptional stop signals in CSNB horses. Coexistence and co-inheritance of two independent TRPM1 mutations across 1000 equine generations suggests a selective advantage for the apparently deleterious CSNB trait
    corecore