621 research outputs found

    Magnetic phase diagram of the diluted metamagnet Fe\u3csub\u3e0.95\u3c/sub\u3eMg\u3csub\u3e0.05\u3c/sub\u3eBr\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    The axial magnetic phase diagram of the antiferromagnet Fe0.95Mg0.05Br2 is studied by specific heat, superconducting quantum interference device, and Faraday rotation techniques. The diamagnetic impurities give rise to random-field criticality along the second-order phase line Hc(T) between TN=13.1 K and a multicritical point at Tm≈5 K, and to a spin-flop line between Tm and the critical end-point temperature Te≈3.5 K. The phase line H1(T)c(T) ending at Tm is probably due to symmetric nondiagonal exchange

    Neutron scattering study of transverse magnetism

    Get PDF
    In order to clarify the nature of the additional phase transition at H1 (T) \u3c Hc (T) of the layered antiferromagnetic (AF) insulator FeBr2 as found by Aruga Katori et al. (1996) we measured the intensity of different Bragg-peaks in different scattering geometries. Transverse AF ordering is observed in both AF phases, AFI and AFII. Its order parameter exhibits a peak at T1 = T (H1) in temperature scans and does not vanish in zero field. Possible origins of the step-like increase of the transverse ferromagnetic ordering induced by a weak in-plane field component when entering AFI below T1 are discussed

    Aging and memory effects in beta-hydrochinone-clathrate

    Full text link
    The out-of-equilibrium low-frequency complex susceptibility of the orientational glass methanol(73%)-beta-hydrochinone-clathrate is studied using temperature-stop protocols in aging experiments . Although the material does not have a sharp glass transition aging effects including rejuvenation and memory are found at low temperatures. However, they turn out to be much weaker, however, than in conventional magnetic spin glasses.Comment: 5 pages RevTeX, 6 eps-figures include

    Reverse dark current in organic photodetectors and the major role of traps as source of noise

    Get PDF
    Organic photodetectors have promising applications in low-cost imaging, health monitoring and near-infrared sensing. Recent research on organic photodetectors based on donor–acceptor systems has resulted in narrow-band, flexible and biocompatible devices, of which the best reach external photovoltaic quantum efficiencies approaching 100%. However, the high noise spectral density of these devices limits their specific detectivity to around 1013 Jones in the visible and several orders of magnitude lower in the near-infrared, severely reducing performance. Here, we show that the shot noise, proportional to the dark current, dominates the noise spectral density, demanding a comprehensive understanding of the dark current. We demonstrate that, in addition to the intrinsic saturation current generated via charge-transfer states, dark current contains a major contribution from trap-assisted generated charges and decreases systematically with decreasing concentration of traps. By modeling the dark current of several donor–acceptor systems, we reveal the interplay between traps and charge-transfer states as source of dark current and show that traps dominate the generation processes, thus being the main limiting factor of organic photodetectors detectivity

    Miniaturized VIS-NIR Spectrometers Based on Narrowband and Tunable Transmission Cavity Organic Photodetectors with Ultrahigh Specific Detectivity above 1014 Jones

    Get PDF
    Spectroscopic photodetection plays a key role in many emerging applications such as context-aware optical sensing, wearable biometric monitoring, and biomedical imaging. Photodetectors based on organic semiconductors open many new possibilities in this field. However, ease of processing, tailorable optoelectronic properties, and sensitivity for faint light are still significant challenges. Here, the authors report a novel concept for a tunable spectral detector by combining an innovative transmission cavity structure with organic absorbers to yield narrowband organic photodetection in the wavelength range of 400–1100 nm, fabricated in a full-vacuum process. Benefiting from this strategy, one of the best performed narrowband organic photodetectors is achieved with a finely wavelength-selective photoresponse (full-width-at-half-maximum of ≈40 nm), ultrahigh specific detectivity above 1014 Jones, the maximum response speed of 555 kHz, and a large dynamic range up to 168 dB. Particularly, an array of transmission cavity organic photodetectors is monolithically integrated on a small substrate to showcase a miniaturized spectrometer application, and a true proof-of-concept transmission spectrum measurement is successfully demonstrated. The excellent performance, the simple device fabrication as well as the possibility of high integration of this new concept challenge state-of-the-art low-noise silicon photodetectors and will mature the spectroscopic photodetection into technological realities

    Random Field Models for Relaxor Ferroelectric Behavior

    Full text link
    Heat bath Monte Carlo simulations have been used to study a four-state clock model with a type of random field on simple cubic lattices. The model has the standard nonrandom two-spin exchange term with coupling energy JJ and a random field which consists of adding an energy DD to one of the four spin states, chosen randomly at each site. This Ashkin-Teller-like model does not separate; the two random-field Ising model components are coupled. When D/J=3D / J = 3, the ground states of the model remain fully aligned. When D/J≥4D / J \ge 4, a different type of ground state is found, in which the occupation of two of the four spin states is close to 50%, and the other two are nearly absent. This means that one of the Ising components is almost completely ordered, while the other one has only short-range correlations. A large peak in the structure factor S(k)S (k) appears at small kk for temperatures well above the transition to long-range order, and the appearance of this peak is associated with slow, "glassy" dynamics. The phase transition into the state where one Ising component is long-range ordered appears to be first order, but the latent heat is very small.Comment: 7 pages + 12 eps figures, to appear in Phys Rev

    Critical exponents at the ferromagnetic transition in tetrakis(diethylamino)ethylene-C60_{60} (TDAE-C60_{60})

    Full text link
    Critical exponents at the ferromagnetic transition were measured for the first time in an organic ferromagnetic material tetrakis(dimethylamino)ethylene fullerene[60] (TDAE-C60_{60}). From a complete magnetization-temperature-field data set near Tc=16.1±0.05,T_{c}=16.1\pm 0.05, we determine the susceptibility and magnetization critical exponents γ=1.22±0.02\gamma =1.22\pm 0.02 and β=0.75±0.03\beta =0.75 \pm 0.03 respectively, and the field vs. magnetization exponent at TcT_{c} of δ=2.28±0.14\delta =2.28\pm 0.14. Hyperscaling is found to be violated by Ω≡d′−d≈−1/4\Omega \equiv d^{\prime}-d \approx -1/4, suggesting that the onset of ferromagnetism can be related to percolation of a particular contact configuration of C60_{60} molecular orientations.Comment: 5 pages, including 3 figures; to appear in Phys. Rev. Let

    Coexistence of the Critical Slowing Down and Glassy Freezing in Relaxor Ferroelectrics

    Full text link
    We have developed a dynamical model for the dielectric response in relaxor ferroelectrics which explicitly takes into account the coexistence of the critical slowing down and glassy freezing. The application of the model to the experiment in PMN allowed for the reconstruction of the nonequilibrium spin glass state order parameter and its comparison with the results of recent NMR experiment (Blinc et al., Phys. Rev. Lett. 83, No. 2 (1999)). It is shown that the degree of the local freezing is rather small even at temperatures where the field-cooled permittivity exceeds the frequency dependent permittivity by an order of magnitude. This observation indicates the significant role of the critical slowing down (accompanying the glass freezing) in the system dynamics. Also the theory predicts an important interrelationship between the frequency dependent permittivity and the zero-field-cooled permittivity, which proved to be consistent with the experiment in PMN (A. Levstik et. al., Phys. Rev. B 57, 11204 (1998))

    Nonlinear magnetic susceptibility and aging phenomena in reentrant ferromagnet: Cu0.2_{0.2}Co0.8_{0.8}Cl2_{2}-FeCl3_{3} graphite bi-intercalation compound

    Full text link
    Linear and nonlinear dynamic properties of a reentrant ferromagnet Cu0.2_{0.2}Co0.8_{0.8}Cl2_{2}-FeCl3_{3} graphite bi-intercalation compound are studied using AC and DC magnetic susceptibility. This compound undergoes successive phase transitions at the transition temperatures ThT_{h} (= 16 K), TcT_{c} (= 9.7 K), and TRSGT_{RSG} (= 3.5 K). The static and dynamic behaviors of the reentrant spin glass phase below TRSGT_{RSG} are characterized by those of normal spin glass phase with critical exponent β\beta = 0.57 ±\pm 0.10, a dynamic critical exponent xx = 8.5 ±\pm 1.8, and an exponent pp (= 1.55 ±\pm 0.13) for the de Almeida -Thouless line. A prominent nonlinear susceptibility is observed between TRSGT_{RSG} and TcT_{c} and around ThT_{h}, suggesting a chaotic nature of the ferromagnetic phase (TRSG≤T≤TcT_{RSG} \leq T \leq T_{c}) and the helical spin ordered phase (Tc≤T≤ThT_{c} \leq T \leq T_{h}). The aging phenomena are observed both in the RSG and FM phases, with the same qualitative features as in normal spin glasses. The aging of zero-field cooled magnetization indicates a drastic change of relaxation mechanism below and above TRSGT_{RSG}. The time dependence of the absorption χ′′\chi^{\prime \prime} is described by a power law form (≈t−b′′\approx t^{-b^{\prime \prime}}) in the ferromagnetic phase, where b′′≈0.074±0.016b^{\prime \prime} \approx 0.074 \pm 0.016 at ff = 0.05 Hz and TT = 7 K. No ωt\omega t-scaling law for χ′′\chi^{\prime \prime} [≈(ωt)−b′′\approx (\omega t)^{-b^{\prime \prime}}] is observed.Comment: 14 pages, 16 figures, and 2 table
    • …
    corecore