86 research outputs found

    Functional Interplay of Type-2 Corticotrophin Releasing Factor and Dopamine Receptors in the Basolateral Amygdala-Medial Prefrontal Cortex Circuitry

    Get PDF
    Background: Basolateral amygdala (BLA) excitatory projections to medial prefrontal cortex (PFC) play a key role controlling stress behavior, pain, and fear. Indeed, stressful events block synaptic plasticity at the BLA-PFC circuit. The stress responses involve the action of corticotrophin releasing factor (CRF) through type 1 and type 2 CRF receptors (CRF1 and CRF2). Interestingly, it has been described that dopamine receptor 1 (D1R) and CRF peptide have a modulatory role of BLA-PFC transmission. However, the participation of CRF1 and CRF2 receptors in BLA-PFC synaptic transmission still is unclear. Methods: We used in vivo microdialysis to determine dopamine and glutamate (GLU) extracellular levels in PFC after BLA stimulation. Immunofluorescence anatomical studies in rat PFC synaptosomes devoid of postsynaptic elements were performed to determine the presence of D1R and CRF2 receptors in synaptical nerve endings. Results: Here, we provide direct evidence of the opposite role that CRF receptors exert over dopamine extracellular levels in the PFC. We also show that D1R colocalizes with CRF2 receptors in PFC nerve terminals. Intra-PFC infusion of antisauvagine-30, a CRF2 receptor antagonist, increased PFC GLU extracellular levels induced by BLA activation. Interestingly, the increase in GLU release observed in the presence of antisauvagine-30 was significantly reduced by incubation with SCH23390, a D1R antagonist. Conclusion: PFC CRF2 receptor unmasks D1R effect over glutamatergic transmission of the BLA-PFC circuit. Overall, CRF2 receptor emerges as a new modulator of BLA to PFC glutamatergic transmission, thus playing a potential role in emotional disorders. Keywords: CRF2 receptor; D1 receptor; dopaminergic transmission; glutamatergic transmission; prefrontal cortex

    Heroin versus cocaine: opposite choice as a function of context but not of drug history in the rat

    Get PDF
    Rationale Previous studies have shown that rats trained to self-administer heroin and cocaine exhibit opposite preferences, as a function of setting, when tested in a choice paradigm. Rats tested at home prefer heroin to cocaine whereas rats tested outside the home prefer cocaine to heroin. Here we investigated whether drug history would influence subsequent drug preference in distinct settings. Based on a theoretical model of drug-setting interaction, we predicted that regardless of drug history rats would prefer heroin at home and cocaine outside the home. Methods Rats with double-lumen catheters were first trained to self-administer either heroin (25 ÎĽg/kg) or cocaine (400 ÎĽg/kg) for 12 consecutive sessions. Twenty-six rats were housed in the self-administration chambers (thus, they were tested at home) whereas 30 rats lived in distinct home cages and were transferred to self-administration chambers only for the self-administration session (thus, they were tested outside the home). The rats were then allowed to choose repeatedly between heroin and cocaine within the same session for 7 sessions. Results Regardless of the training drug, the rats tested outside the home preferred cocaine to heroin whereas the rats tested at home preferred heroin to cocaine. There was no correlation between drug preference and drug intake during the training phase. Conclusion Drug preferences were powerfully influenced by the setting but, quite surprisingly, not by drug history. This suggests that, under certain conditions, associative learning processes and drug-induced neuroplastic adaptations play a minor role in shaping individual preferences for one drug or the other

    Kinetics of decomposition of tetramethyl murexide in acid solutions

    No full text

    8-oxoguanine DNA glycosylase, but not Kin17 protein, is translocated and differentially regulated by estrogens in rat brain cells

    No full text
    8-oxoguanine DNA glycosylase and Kin17 are proteins widely distributed and phylogenetically conserved in the CNS. 8-oxoguanine DNA glycosylase is a DNA repair enzyme that excises 7,8-dihydro-8-oxoguanine present in DNA damaged by oxidative stress. Kin17 protein is involved in DNA repair and illegitimate recombination in eukaryotic cells. The present study evaluates the effect of ovarian hormones on the expression of both proteins in the magnocellular paraventricular nucleus of the hypothalamus and the bed nucleus of the stria terminalis in female and male rat brains. In the paraventricular nucleus, ovariectomy induced a significant decrease in the number of 8-oxoguanine DNA glycosylase-positive nuclei as well as in their relative fluorescent intensity as compared with ovariectomized-estradiol treated and proestrous groups. Confocal microscopy observation demonstrated that oxoguanine DNA glycosylase protein is located in the Hoechst-dyed nuclei and cytoplasm in male and ovariectomized rats. Surprisingly, following estradiol administration to ovariectomized and proestrous rats, the 8-oxoguanine DNA glycosylase immunolabeling was observed in the nucleolus, the cytoplasm and the dendrites of cells, while Kin17 protein was always localized in the cell nuclei. In the bed nucleus of the stria terminalis, the number of 8-oxoguanine DNA glycosylase-positive nuclei during proestrous was significantly lower than the number obtained in males and ovariectomized rats and similar to the number of ovariectomized-estradiol-treated groups. In contrast to these observations, no significant differences were observed in the expression of kin17 protein. Our results suggest that estrogens differentially regulate the expression of 8-oxoguanine DNA glycosylase, but not that of Kin17 protein, in specific regions of the rat brain and that estradiol can translocate the 8-oxoguanine DNA glycosylase protein within nuclei and to other subcellular compartment

    N,N-dimethylthioamphetamine and methylthioamphetamine, two non-neurotoxic substrates of 5-HT transporters, have low in vitro efficacy for the induction of transporter-mediated 5-HT release and currents.

    No full text
    • …
    corecore