270 research outputs found

    A Comprehensive Comparative Test of Seven Widely-Used Spectral Synthesis Models Against Multi-Band Photometry of Young Massive Star Clusters

    Get PDF
    We test the predictions of spectral synthesis models based on seven different massive-star prescriptions against Legacy ExtraGalactic UV Survey (LEGUS) observations of eight young massive clusters in two local galaxies, NGC 1566 and NGC 5253, chosen because predictions of all seven models are available at the published galactic metallicities. The high angular resolution, extensive cluster inventory and full near-ultraviolet to near-infrared photometric coverage make the LEGUS dataset excellent for this study. We account for both stellar and nebular emission in the models and try two different prescriptions for attenuation by dust. From Bayesian fits of model libraries to the observations, we find remarkably low dispersion in the median E(B-V) (~0.03 mag), stellar masses (~10^4 M_\odot) and ages (~1 Myr) derived for individual clusters using different models, although maximum discrepancies in these quantities can reach 0.09 mag and factors of 2.8 and 2.5, respectively. This is for ranges in median properties of 0.05-0.54 mag, 1.8-10x10^4 M_\odot and 1.6-40 Myr spanned by the clusters in our sample. In terms of best fit, the observations are slightly better reproduced by models with interacting binaries and least well reproduced by models with single rotating stars. Our study provides a first quantitative estimate of the accuracies and uncertainties of the most recent spectral synthesis models of young stellar populations, demonstrates the good progress of models in fitting high-quality observations, and highlights the needs for a larger cluster sample and more extensive tests of the model parameter space.Comment: Accepted for publication in MNRAS (14 Jan. 2016). 30 pages, 16 figures, 9 table

    LEGUS and Halpha-LEGUS Observations of Star Clusters in NGC 4449: Improved Ages and the Fraction of Light in Clusters as a Function of Age

    Get PDF
    We present a new catalog and results for the cluster system of the starburst galaxy NGC 4449 based on multi-band imaging observations taken as part of the LEGUS and Halpha-LEGUS surveys. We improve the spectral energy fitting method used to estimate cluster ages and find that the results, particularly for older clusters, are in better agreement with those from spectroscopy. The inclusion of Halpha measurements, the role of stochasticity for low mass clusters, the assumptions about reddening, and the choices of SSP model and metallicity all have important impacts on the age-dating of clusters. A comparison with ages derived from stellar color-magnitude diagrams for partially resolved clusters shows reasonable agreement, but large scatter in some cases. The fraction of light found in clusters relative to the total light (i.e., T_L) in the U, B, and V filters in 25 different ~kpc-size regions throughout NGC 4449 correlates with both the specific Region Luminosity, R_L, and the dominant age of the underlying stellar population in each region. The observed cluster age distribution is found to decline over time as dN/dt ~ t^g, with g=-0.85+/-0.15, independent of cluster mass, and is consistent with strong, early cluster disruption. The mass functions of the clusters can be described by a power law with dN/dM ~ M^b and b=-1.86+/-0.2, independent of cluster age. The mass and age distributions are quite resilient to differences in age-dating methods. There is tentative evidence for a factor of 2-3 enhancement in both the star and cluster formation rate ~100 - 300 Myr ago, indicating that cluster formation tracks star formation generally. The enhancement is probably associated with an earlier interaction event

    The evolution of neutral hydrogen over the past 11 Gyr via H i 21 cm absorption

    Get PDF
    We present the results of a blind search for intervening H i 21 cm absorption towards 260 radio sources in the redshift range 0 < z < 2.74 with the Green Bank Telescope. The survey has the sensitivity to detect sub-damped Ly α (DLA) systems for H i spin temperatures Ts/f = 100 K, and despite the successful re-detection of 10 known 21 cm absorbers in the sample, we detect no new absorption lines in the full survey. Sources detected in 21 cm absorption were also searched for hydroxyl (OH) 18 cm absorption and we re-detect 1667 MHz OH absorption towards PKS 1830-211. We searched for intervening H i 21 cm absorption along the line of sight in each source achieving a total redshift coverage of Δz = 88.64 (comoving absorption path of ΔX = 159.5) after removing regions affected by radio frequency interference. We compute a 95 per cent confidence upper limit on the column density frequency distribution f(NH i) and set a statistical constraint on the spin temperature Ts in the range 100-1000 K, consistent with prior redshifted optical DLA surveys and H i 21 cm emission observations at the same redshifts. We infer a value for the cosmological mass density of neutral gas, ωH i. Through comparison with prior ωH i measurements, we place a statistical constraint on the mean spin temperature of Ts/f = 175 K. Our derived ωH i values support a relative mild evolution in ωH i over the last 11 Gyr and are consistent with other methods that measure ωH i

    The properties, origin and evolution of stellar clusters in galaxy simulations and observations

    Get PDF
    We investigate the properties and evolution of star particles in two simulations of isolated spiral galaxies, and two galaxies from cosmological simulations. Unlike previous numerical work, where typically each star particle represents one ‘cluster’, for the isolated galaxies we are able to model features we term ‘clusters’ with groups of particles. We compute the spatial distribution of stars with different ages, and cluster mass distributions, comparing our findings with observations including the recent LEGUS survey. We find that spiral structure tends to be present in older (100s Myrs) stars and clusters in the simulations compared to the observations. This likely reflects differences in the numbers of stars or clusters, the strength of spiral arms, and whether the clusters are allowed to evolve. Where we model clusters with multiple particles, we are able to study their evolution. The evolution of simulated clusters tends to follow that of their natal gas clouds. Massive, dense, long-lived clouds host massive clusters, whilst short-lived clouds host smaller clusters which readily disperse. Most clusters appear to disperse fairly quickly, in basic agreement with observational findings. We note that embedded clusters may be less inclined to disperse in simulations in a galactic environment with continuous accretion of gas onto the clouds than isolated clouds and correspondingly, massive young clusters which are no longer associated with gas tend not to occur in the simulations. Caveats of our models include that the cluster densities are lower than realistic clusters, and the simplistic implementation of stellar feedback

    An ALMA/HST Study of Millimeter Dust Emission and Star Clusters

    Get PDF
    We present results from a joint ALMA/HST study of the nearby spiral galaxy NGC 628. We combine the Hubble Space Telescope (HST) Legacy ExtraGalactic UV Survey (LEGUS) database of over 1000 stellar clusters in NGC 628 with ALMA Cycle 4 mm/submillimeter observations of the cold dust continuum that span ~15 kpcÂČ including the nuclear region and western portions of the galaxy's disk. The resolution—1.”1 or approximately 50 pc at the distance of NGC 628—allows us to constrain the spatial variations in the slope of the millimeter dust continuum as a function of the ages and masses of the nearby stellar clusters. Our results indicate an excess of dust emission in the millimeter, assuming a typical cold dust model for a normal star-forming galaxy, but little correlation of the dust continuum slope with stellar cluster age or mass. For the depth and spatial coverage of these observations, we cannot substantiate the millimeter/submillimeter excess arising from the processing of dust grains by the local interstellar radiation field. We detect a bright unknown source in NGC 628 in ALMA bands 4 and 7 with no counterparts at other wavelengths from ancillary data. We speculate this is possibly a dust-obscured supernova

    Localised HI 21-cm absorption towards a double-lobed z=0.24 radio galaxy

    Full text link
    We present the results of a mini-survey for associated HI 21-cm absorption at z < 0.42 with the Giant Metrewave Radio Telescope. Our targets are radio galaxies, selected on the basis that the 1216 Angstrom luminosities are below 10^23 W/Hz, above which there has never been a detection of 21-cm absorption. Of the three sources for which we obtained good data, two are unclassified active galactic nuclei (AGN) and one is type-2. Being a non-detection, the type-2 object is consistent with our previous result that 21-cm absorption in radio sources is not dictated by unified schemes of AGN. In the case of the detection, the absorption only occurs towards one of the two resolved radio lobes in PKS 1649-062. If the absorption is due to an another intervening galaxy, or cool HI gas in the intergalactic medium, covering only the south-west lobe, then, being at the same redshift, this is likely to be gravitationally bound to the optical object identified as PKS 1649-062. If the absorption is due to an inclined disk centred between the lobes, intervening the SW lobe while being located behind the NE lobe, by assuming that it covers the emission peak at 150 kpc from the nucleus, we estimate a dynamical mass of ~3 x 10^12 solar masses for the disk.Comment: 5 pages accepted by MNRAS Letter
    • 

    corecore