58 research outputs found

    Postsocialist disability matrix

    Get PDF
    This paper explores injustices experienced by disabled people in the postsocialist countries of Central and Eastern Europe. Drawing on Nancy Fraser’s theory of social justice, the analysis proposes a ‘matrix’ that reveals the negative impact of two factors – state socialist legacy and postsocialist neoliberalization – on disabled people’s parity of participation in three dimensions of justice – economic redistribution, cultural recognition, and political representation. The legacy of state socialism has underpinned: segregated service provision; medical-productivist understanding of disability for assessment purposes; denial of disability on everyday level; and weak disability organizing. Neoliberal restructuring has resulted in: retrenchment of disability support through decentralization, austerity, and workfare; stigmatization of ‘dependency’ through the discourse of ‘welfare dependency’; responsibilization of disabled people; and depoliticization of disability organizations by restricting their activities to service provision and incorporating them in structures of tokenistic participation. The analysis is informed by reports and academic studies of disability in the postsocialist region

    Flow of foam through a convergent channel

    No full text
    International audienceWe study experimentally the flow of a foam confined as a bubble monolayer between two plates through a convergent channel. We quantify the velocity, the distribution and orientation of plastic events, and the elastic stress, using image analysis. We use two different soap solutions: a sodium dodecyl sulfate (SDS) solution, with a negligible wall friction between the bubbles and the confining plates, and a mixture containing a fatty acid, giving a large wall friction. We show that for SDS solutions, the velocity profile obeys a self-similar form which results from the superposition of plastic events, and the elastic deformation is uniform. For the other solution, the velocity field differs and the elastic deformation increases towards the exit of the channel. We discuss and quantify the role of wall friction on the velocity profile, the elastic deformation, and the rate of plastic events

    Remarkably high surface visco-elasticity of adsorption layers of triterpenoid saponins

    No full text
    Saponins are natural surfactants, with molecules composed of a hydrophobic steroid or triterpenoid group, and one or several hydrophilic oligosaccharide chains attached to this group. Saponins are used in cosmetic, food and pharmaceutical products, due to their excellent ability to stabilize emulsions and foams, and to solubilize bulky hydrophobic molecules. The foam and emulsion applications call for a better understanding of the surface properties of saponin adsorption layers, including their rheological properties. Of particular interest is the relation between the molecular structure of the various saponins and their surface properties. Here, we study a series of eight triterpenoid and three steroid saponins, with different numbers of oligosaccharide chains. The surface rheological properties of adsorption layers at the air-water interface, subjected to creep-recovery and oscillatory shear deformations, are investigated. The experiments showed that all steroid saponins exhibited no shear elasticity and had negligible surface viscosity. In contrast, most of the triterpenoid saponins showed complex visco-elastic behavior with extremely high elastic modulus (up to 1100 mN m(-1)) and viscosity (130 N s m(-1)). Although the magnitude of the surface modulus differed significantly for the various saponins, they all shared qualitatively similar rheological properties: (1) the elastic modulus was much higher than the viscous one. (2) Up to a certain critical value of surface stress, sC, the single master curve described the dependence of the creep compliance versus time. This rheological response was described well by the compound Voigt model. (3) On increasing the surface stress above sC, the compliance decreased with the applied stress, and eventually, all layers became purely viscous, indicating a loss in the layer structure, responsible for the elastic properties. The saponin extracts, showing the highest elastic moduli, were those of Escin, Tea saponins and Berry saponins, all containing predominantly monodesmosidic triterpenoid saponins. Similarly, a high surface modulus was measured for Ginsenosides extracts, containing bidesmosidic triterpenoid saponins with short sugar chains

    Role of the hydrophobic phase for the unique rheologica properties of saponin adsorption layers

    No full text
    Saponins are a diverse class of natural, plant derived surfactants, with peculiar molecular structure consisting of a hydrophobic scaffold and one or several hydrophilic oligosaccharide chains. Saponins have strong surface activity and are used as natural emulsifiers and foaming agents in food and beverage, pharmaceutical, ore processing, and other industries. Many saponins form adsorption layers at the air–water interface with extremely high surface elasticity and viscosity. The molecular origin of the observed unique interfacial visco-elasticity of saponin adsorption layers is of great interest from both scientific and application viewpoints. In the current study we demonstrate that the hydrophobic phase in contact with water has a very strong effect on the interfacial properties of saponins and that the interfacial elasticity and viscosity of the saponin adsorption layers decrease in the order: air > hexadecane » tricaprylin. The molecular mechanisms behind these trends are analyzed and discussed in the context of the general structure of the surfactant adsorption layers at various nonpolar phase–water interfaces

    Surface shear rheology of hydrophobin adsorption layers: laws of viscoelastic behaviour with applications to long-term foam stability

    No full text
    The long-term stabilization of foams by proteins for food applications is related to the ability of proteins to form dense and mechanically strong adsorption layers that cover the bubbles in the foams. The hydrophobins represent a class of proteins that form adsorption layers of extraordinary high shear elasticity and mechanical strength, much higher than that of the common milk and egg proteins. Our investigation of pure and mixed (with added beta-casein) hydrophobin layers revealed that their rheological behavior obeys a compound rheological model, which represents a combination of the Maxwell and Herschel-Bulkley laws. It is remarkable that the combined law is obeyed not only in the simplest regime of constant shear rate (angle ramp), but also in the regime of oscillatory shear strain. The surface shear elasticity and viscosity, E-sh and eta(sh), are determined as functions of the shear rate by processing the data for the storage and loss moduli, G' and G ''. At greater strain amplitudes, the spectrum of the stress contains not only the first Fourier mode, but also the third one. The method is extended to this non-linear regime, where the rheological parameters are determined by theoretical fit of the experimental Lissajous plot. The addition of beta-casein to the hydrophobin leads to softer adsorption layers, as indicated by their lower shear elasticity and viscosity. The developed approach to the rheological characterization of interfacial layers allows optimization and control of the performance of mixed protein adsorption layers with applications in food foams

    Surface Shear Rheology of Saponin Adsorption Layers

    No full text
    Saponins are a wide class of natural surfactants, with molecules containing a rigid hydrophobic group (triterpenoid or steroid), connected via glycoside bonds to hydrophilic oligosaccharide chains. These surfactants are very good foam stabiliziers and emulsifiers, and show a range of nontrivial biological activities. The molecular mechanisms behind these unusual properties are unknown, and, therefore, the saponins have attracted significant research interest in recent years. In our previous study (Stanimirova et al. Langmuir 2011, 27, 12486-12498), we showed that the triterpenoid saponins extracted from Quillaja saponaria plant (Quillaja saponins) formed adsorption layers with unusually high surface dilatational elasticity, 280 +/- 30 mN/m. In this Article, we study the shear rheological properties of the adsorption layers of Quillaja saponins. In addition, we study the surface shear rheological properties of Yucca saponins, which are of steroid type. The experimental results show that the adsorption layers of Yucca saponins exhibit purely viscous rheological response, even at the lowest shear stress applied, whereas the adsorption layers of Quillaja saponins behave like a viscoelastic two-dimensional body. For Quillaja saponins, a single master curve describes the data for the viscoelastic creep compliance versus deformation time, up to a certain critical value of the applied shear stress. Above this value, the layer compliance increases, and the adsorption layers eventually transform into viscous ones. The experimental creep recovery curves for the viscoelastic layers are fitted very well by compound Voigt rheological model. The obtained results are discussed from the viewpoint of the layer structure and the possible molecular mechanisms, governing the rheological response of the saponin adsorption layers
    • …
    corecore