100 research outputs found

    Sildenafil added to pirfenidone in patients with advanced idiopathic pulmonary fibrosis and risk of pulmonary hypertension: A Phase IIb, randomised, double-blind, placebo-controlled study – Rationale and study design

    Get PDF
    Background: Pulmonary hypertension (PH) is commonly observed in patients with advanced idiopathic pulmonary fibrosis (IPF). Despite the availability of therapies for both IPF and PH, none are approved for PH treatment in the context of significant pulmonary disease. This study will investigate the use of sildenafil added to pirfenidone in patients with advanced IPF and risk of PH, who represent a group with a high unmet medical need. Methods: This Phase IIb, randomised, double-blind, placebo-controlled trial is actively enrolling patients and will study the efficacy, safety and tolerability of sildenafil or placebo in patients with advanced IPF and intermediate or high probability of Group 3 PH who are receiving a stable dose of pirfenidone. Patients with advanced IPF (diffusing capacity for carbon monoxide 6440% predicted) and risk of Group 3 PH (defined as mean pulmonary arterial pressure 6520 mm Hg with pulmonary arterial wedge pressure 6415 mm Hg on a previous right-heart catheterisation [RHC], or intermediate/high probability of Group 3 PH as defined by the 2015 European Society of Cardiology/European Respiratory Society guidelines) are eligible. In the absence of a previous RHC, patients with an echocardiogram showing a peak tricuspid valve regurgitation velocity 652.9 m/s can enrol if all other criteria are met. The primary efficacy endpoint is the proportion of patients with disease progression over a 52-week treatment period. Safety will be evaluated descriptively. Discussion: Combination treatment with sildenafil and pirfenidone may warrant investigation of the treatment of patients with advanced IPF and pulmonary vascular involvement leading to PH

    Small coupling limit and multiple solutions to the Dirichlet Problem for Yang Mills connections in 4 dimensions - Part I

    Full text link
    In this paper (Part I) and its sequels (Part II and Part III), we analyze the structure of the space of solutions to the epsilon-Dirichlet problem for the Yang-Mills equations on the 4-dimensional disk, for small values of the coupling constant epsilon. These are in one-to-one correspondence with solutions to the Dirichlet problem for the Yang Mills equations, for small boundary data. We prove the existence of multiple solutions, and, in particular, non minimal ones, and establish a Morse Theory for this non-compact variational problem. In part I, we describe the problem, state the main theorems and do the first part of the proof. This consists in transforming the problem into a finite dimensional problem, by seeking solutions that are approximated by the connected sum of a minimal solution with an instanton, plus a correction term due to the boundary. An auxiliary equation is introduced that allows us to solve the problem orthogonally to the tangent space to the space of approximate solutions. In Part II, the finite dimensional problem is solved via the Ljusternik-Schirelman theory, and the existence proofs are completed. In Part III, we prove that the space of gauge equivalence classes of Sobolev connections with prescribed boundary value is a smooth manifold, as well as some technical lemmas used in Part I. The methods employed still work when the 4-dimensional disk is replaced by a more general compact manifold with boundary, and SU(2) is replaced by any compact Lie group

    Pirfenidone in unclassifiable interstitial lung disease: a subgroup analysis by concomitant mycophenolate mofetil and/or previous corticosteroid use

    Get PDF
    Introduction There are currently no approved treatments solely for unclassifiable interstitial lung disease (uILD); however, a recent trial showed this population can benefit from pirfenidone. We report a subgroup analysis of this trial to assess the effects of immunomodulators (concomitant mycophenolate mofetil [MMF] and/or previous corticosteroids) with pirfenidone in patients with uILD. Methods This was a multicenter, international, double-blind, randomized, placebo-controlled phase II trial of patients with progressive fibrosing uILD (NCT03099187). Patients were randomized (1:1) to receive pirfenidone 2403 mg/day or placebo. This analysis assessed forced vital capacity (FVC) change from baseline measured using site spirometry (key secondary endpoint) and safety over 24 weeks by concomitant MMF use at randomization (pre-specified analysis) and/or previous corticosteroid use (post hoc analysis). Results Overall, 253 patients were randomized, including 45 (17.8%) patients (pirfenidone, n = 23; placebo, n = 22) receiving concomitant MMF with/without previous corticosteroids (MMF subgroup); 79 (31.2%) patients (pirfenidone, n = 44; placebo, n = 35) receiving previous corticosteroids without MMF (corticosteroids/no-MMF subgroup); and 129 (51.0%) patients (pirfenidone, n = 60; placebo, n = 69) not receiving concomitant MMF or previous corticosteroids (no-corticosteroids/no-MMF subgroup). At 24 weeks, difference in mean (95% confidence interval) FVC change from baseline between pirfenidone and placebo was − 55.4 mL (− 206.7, 96.0; P = 0.4645) in the MMF subgroup; 128.4 mL (− 6.4, 263.3; P = 0.0617) in the corticosteroids/no-MMF subgroup; and 115.5 mL (35.1, 195.9; P = 0.0052) in the no-corticosteroids/no-MMF subgroup. All subgroups generally exhibited a similar pattern of treatment-emergent adverse events. Conclusion Although limited by design and small sample sizes, this analysis suggests pirfenidone may be less effective in patients with uILD receiving concomitant MMF, whereas a beneficial treatment effect was observed in patients not receiving concomitant MMF regardless of previous corticosteroid use. Pirfenidone was well tolerated regardless of MMF and/or corticosteroid use. Trial Registration Number ClinicalTrials.gov: NCT03099187

    A review of the challenges, learnings and future directions of home handheld spirometry in interstitial lung disease

    Get PDF
    Background Patients with interstitial lung disease (ILD) require regular physician visits and referral to specialist ILD clinics. Difficulties or delays in accessing care can limit opportunities to monitor disease trajectory and response to treatment, and the COVID-19 pandemic has added to these challenges. Therefore, home monitoring technologies, such as home handheld spirometry, have gained increased attention as they may help to improve access to care for patients with ILD. However, while several studies have shown that home handheld spirometry in ILD is acceptable for most patients, data from clinical trials are not sufficiently robust to support its use as a primary endpoint. This review discusses the challenges that were encountered with handheld spirometry across three recent ILD studies, which included home spirometry as a primary endpoint, and highlights where further optimisation and research into home handheld spirometry in ILD is required. Abstract body Rate of decline in forced vital capacity (FVC) as measured by daily home handheld spirometry versus site spirometry was of primary interest in three recently completed studies: STARLINER (NCT03261037), STARMAP and a Phase II study of pirfenidone in progressive fibrosing unclassifiable ILD (NCT03099187). Unanticipated practical and technical issues led to problems with estimating FVC decline. In all three studies, cross-sectional correlations for home handheld versus site spirometry were strong/moderate at baseline and later timepoints, but longitudinal correlations were weak. Other issues observed with the home handheld spirometry data included: high within-patient variability in home handheld FVC measurements; implausible longitudinal patterns in the home handheld spirometry data that were not reflected in site spirometry; and extreme estimated rates of FVC change. Conclusions Home handheld spirometry in ILD requires further optimisation and research to ensure accurate and reliable FVC measurements before it can be used as an endpoint in clinical trials. Refresher training, automated alerts of problems and FVC changes, and patient support could help to overcome some practical issues. Despite the challenges, there is value in incorporating home handheld spirometry into clinical practice, and the COVID-19 pandemic has highlighted the potential for home monitoring technologies to help improve access to care for patients with ILD

    XELOX vs FOLFOX-4 as first-line therapy for metastatic colorectal cancer: NO16966 updated results

    Get PDF
    BACKGROUND: We report updated overall survival (OS) data from study NO16966, which compared capecitabine plus oxaliplatin (XELOX) vs 5-fluorouracil/folinic acid plus oxaliplatin (FOLFOX4) as first-line therapy in metastatic colorectal cancer. METHODS: NO16966 was a randomised, two-arm, non-inferiority, phase III comparison of XELOX vs FOLFOX4, which was subsequently amended to a 2 x 2 factorial design with further randomisation to bevacizumab or placebo. A planned follow-up exploratory analysis of OS was performed. RESULTS: The intent-to-treat (ITT) population comprised 2034 patients (two-arm portion, n = 634; 2 x 2 factorial portion, n 1400). For the whole NO16966 study population, median OS was 19.8 months in the pooled XELOX/XELOX-placebo/XELOX-bevacizumab arms vs 19.5 months in the pooled FOLFOX4/FOLFOX4-placebo/FOLFOX4-bevacizumab arms (hazard ratio 0.95 (97.5% CI 0.85-1.06)). In the pooled XELOX/XELOX-placebo arms, median OS was 19.0 vs 18.9 months in the pooled FOLFOX4/FOLFOX4-placebo arms (hazard ratio 0.95 (97.5% CI 0.83-1.09)). FOLFOX4 was associated with more grade 3/4 neutropenia/granulocytopenia and febrile neutropenia than XELOX, and XELOX with more grade 3 diarrhoea and grade 3 hand-foot syndrome than FOLFOX4. CONCLUSION: Updated survival data from study NO16966 show that XELOX is similar to FOLFOX4, confirming the primary analysis of progression-free survival. XELOX can be considered as a routine first-line treatment option for patients with metastatic colorectal cancer

    Design of a Study Assessing Disease Behaviour During the Peri-Diagnostic Period in Patients with Interstitial Lung Disease: The STARLINER Study

    Get PDF
    Background/Objectives: This study will aim to characterise disease behaviour during the peri-diagnostic period in patients with suspected interstitial lung disease (ILD), including idiopathic pulmonary fibrosis (IPF), using daily home spirometry and accelerometry. Additionally, this study will aim to increase collaboration between secondary and tertiary centres using a digital collaboration platform. Methods: The STARLINER study (NCT03261037) will enrol approximately 180 symptomatic patients aged 50 years or more with radiological evidence of ILD/IPF from community and tertiary centres in Canada and Europe. Approximately two-thirds of sites will be community centres. Patients will be followed during pre-diagnosis (inclusion to diagnosis; up to a maximum of 12 months) and post-diagnosis (diagnosis to treatment initiation; up to a maximum of 6 months). The study will be facilitated by a digital ecosystem consisting of the devices used for home-based assessments and a digital collaboration platform enabling communication between community and tertiary centres, and between clinicians and patients. Planned Outcomes: The primary endpoint will be time-adjusted semi-annual change in forced vital capacity (FVC; in millilitres) during the peri-diagnostic period. Physical functional capacity and patient-reported outcomes (PROs) will also be assessed. FVC and physical functional capacity will be measured using daily home spirometry and accelerometry, and at site visits using spirometry and the 6-min walk test. PROs will be assessed prior to, or during, site visits and will always be completed in the same order. Conclusions: Findings from this study may help to facilitate the early and accurate diagnosis of ILDs by increasing knowledge about disease progression, enabling collaboration between community and tertiary centres and improving communication between clinicians and patients. Trial Registration Number: NCT03261037. Funding: F. Hoffmann-La Roche, Ltd., Basel, Switzerland. Plain Language Summary: Plain language summary available for this article

    Using spatial analysis to demonstrate the heterogeneity of the cardiovascular drug-prescribing pattern in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Geographic Information Systems (GIS) combined with spatial analytical methods could be helpful in examining patterns of drug use. Little attention has been paid to geographic variation of cardiovascular prescription use in Taiwan. The main objective was to use local spatial association statistics to test whether or not the cardiovascular medication-prescribing pattern is homogenous across 352 townships in Taiwan.</p> <p>Methods</p> <p>The statistical methods used were the global measures of Moran's <it>I </it>and Local Indicators of Spatial Association (LISA). While Moran's <it>I </it>provides information on the overall spatial distribution of the data, LISA provides information on types of spatial association at the local level. LISA statistics can also be used to identify influential locations in spatial association analysis. The major classes of prescription cardiovascular drugs were taken from Taiwan's National Health Insurance Research Database (NHIRD), which has a coverage rate of over 97%. The dosage of each prescription was converted into defined daily doses to measure the consumption of each class of drugs. Data were analyzed with ArcGIS and GeoDa at the township level.</p> <p>Results</p> <p>The LISA statistics showed an unusual use of cardiovascular medications in the southern townships with high local variation. Patterns of drug use also showed more low-low spatial clusters (cold spots) than high-high spatial clusters (hot spots), and those low-low associations were clustered in the rural areas.</p> <p>Conclusions</p> <p>The cardiovascular drug prescribing patterns were heterogeneous across Taiwan. In particular, a clear pattern of north-south disparity exists. Such spatial clustering helps prioritize the target areas that require better education concerning drug use.</p

    Another beauty of analytical chemistry: chemical analysis of inorganic pigments of art and archaeological objects

    Full text link
    [EN] This lecture text shows what fascinating tasks analytical chemists face in Art Conservation and Archaeology, and it is hoped that students reading it will realize that passions for science, arts or history are by no means mutually exclusive. This study describes the main analytical techniques used since the eighteenth century, and in particular, the instrumental techniques developed throughout the last century for analyzing pigments and inorganic materials, in general, which are found in cultural artefacts, such as artworks and archaeological remains. The lecture starts with a historical review on the use of analytical methods for the analysis of pigments from archaeological and art objects. Three different periods can be distinguished in the history of the application of the Analytical Chemistry in Archaeometrical and Art Conservation studies: (a) the "Formation'' period (eighteenth century1930), (b) the "Maturing'' period (1930-1970), and (c) the "Expansion'' period (1970-nowadays). A classification of analytical methods specifically established in the fields of Archaeometry and Conservation Science is also provided. After this, some sections are devoted to the description of a number of analytical techniques, which are most commonly used in routine analysis of pigments from cultural heritage. Each instrumental section gives the fundamentals of the instrumental technique, together with relevant analytical data and examples of applications.Financial support is gratefully acknowledged from Spanish ‘‘I+D+I MINECO’’ projects CTQ2011-28079-CO3-01 and CTQ2014-53736-C3-1-P supported by ERDEF funds.Domenech Carbo, MT.; Osete Cortina, L. (2016). Another beauty of analytical chemistry: chemical analysis of inorganic pigments of art and archaeological objects. ChemTexts. 2:1-50. https://doi.org/10.1007/s40828-016-0033-5S1502Wilks H (ed) (1987) Science for conservators: a conservation science teaching series. The Conservation Unit Museums and Galleries Commission, LondonSan AndrĂ©s Moya M, Viña Ferrer S (2004) Fundamentos de quĂ­mica y fĂ­sica para la conservaciĂłn y restauraciĂłn. SĂ­ntesis, MadridDomĂ©nech-CarbĂł MT (2013) Principios fĂ­sico-quĂ­micos de los materiales integrantes de los bienes culturales, Universitat PolitĂšcnica de ValĂšnciaMills JS, White R (1987) The organic chemistry of museum objects. Butterworths, London, pp 141–159Matteini M, Moles A (1991) La Quimica nel Restauro. I materiali dell’arte pittorica. Nardini, FirenzeGomez MA (1998) La RestauraciĂłn. Examen cientĂ­fico aplicado a la conservaciĂłn de obras de arte. CĂĄtedra, MadridTaft WS Jr, Mayer JW (2000) The science of paintings. Springer, New YorkAllen RO (ed) (1989) Archaeological chemistry IV; Advances in chemistry. American Chemical Society, Washington, DCAitken MJ (1990) Science-based dating in archaeology. Longman Archaeology Series, New YorkCiliberto E, Spoto G (eds) (2000) Modern analytical methods in art and archaeology. Wiley, New YorkMatteini M, Moles A (1986) Sciencia e Restauro. Metodi di Indagine, 2nd edn. Nardini, FirenzeOdegaard N, Carroll S, Zimmt W (2000) Material characterization tests for objects of art and archaeology. Archetype Publications, LondonDerrick MR, Stulik DC, Landry MJ (1999) Infrared spectroscopy in conservation science. Getty Conservation Institute, Los AngelesDomĂ©nech-CarbĂł A, DomĂ©nech-CarbĂł MT, Costa V (2009) Electrochemical methods in archaeometry, conservation and restoration. In: Scholz F (ed) Series: Monographs in electrochemistry. Springer, BerlinEdwards HGM, Chalmers JM (eds) (2005) Raman spectroscopy in archaeology and art history. The Royal Society of Chemistry, CambridgeLahanier C (1991) Scientific methods applied to the study of art objects. Mikrochim Acta II:245–254Bitossi G, Giorgi R, Salvadori BM, Dei L (2005) Spectroscopic techniques in cultural heritage conservation: a survey. Appl Spectrosc Rev 40:187–228Odlyha M (2000) Special feature: preservation of cultural heritage. The application of thermal analysis and other advanced analytical techniques to cultural objects. Thermochim Acta 365Feature Special (2003) Archaeometry. Meas Sci Technol 14:1487–1630Aitken MJ (1961) Physics and archaeology. Interscience, New YorkOlin JS (ed) (1982) Future directions in archaeometry. A round table. Smithsonian Institution Press, Washington, DCTownsend JH (2006) What is conservation science? Macromol Symp 238:1–10Nadolny J (2003) The first century of published scientific analyses of the materials of historical painting and polychromy, circa 1780–1880. Rev Conserv 4:39–51Montero Ruiz I, Garcia Heras M, LĂłpez-Romero E (2007) ArqueometrĂ­a: cambios y tendencias actuales. Trabajos de Prehistoria 64:23–40Fernandes Vieira G, Sias Coelho LJ (2011) ArqueometrĂ­a: Mirada histĂłrica de una ciencia en desarrollo. Revista CPC 13:107–133Rees-Jones SG (1990) Early experiments in pigment analysis. Stud Conserv 35:93–101Allen RO (1989) The role of the chemists in archaeological studies. In: Allen RO (ed) Archaeological chemistry IV. Advances in chemistry. American Chemical Society, Washington DC, pp 1–17Plesters J (1956) Cross-sections and chemical analysis of paint samples. Stud Conserv 2:110–157 and references thereinGilberg M (1987) Friedrich Rathgen: the father of modern archaeological conservation. J Am Inst Conserv 26:105–120Olin JS, Salmon ME, Olin CH (1969) Investigations of historical objects utilizing spectroscopy and other optical methods. Appl Optics 8:29–39Feller RL (1954) Dammar and mastic infrared analysis. Science 120:1069–1070Hall ET (1963) Methods of analysis (physical and microchemical) applied to paintings and antiquities. In: Thomson G (ed) Recent advances in conservation. Butterworths, London, pp 29–32Feigl F, Anger V (1972) Spot tests in inorganic analysis, 6th English edition, translated by Oesper RE. Elsevier, AmsterdamLocke DC, Riley OH (1970) Chemical analysis of paint samples using the Weisz ring oven technique. Stud Conserv 15:94–101Mairinger F, Schreiner M (1986) Analysis of supports, grounds and pigments. In: van Schoute R, Verougstracte-Marcq H (eds) PACT 13, Xth Anniversary Meeting of PACT Group. Louvain-la Neuve, pp 171–183 (and references therein)Vandenabeele P, Edwards HGM (2005) Overview: Raman spectrometry of artefacts. In: Edwards HGM, Chalmers JM (eds) Raman spectroscopy in archaeology and art history. The Royal Society of Chemistry, Cambridge, pp 169–178Tykot RH (2004) Scientific methods and applications to archaeological provenance studies. In: Proceedings of the International School of Physics “Enrico Fermi”. IOS Press, Amsterdam, pp 407–432DomĂ©nech-CarbĂł A, DomĂ©nech-CarbĂł MT, Valle-Algarra FM, Domine ME, Osete-Cortina L (2013) On the dehydroindigo contribution to Maya Blue. J Mat Sci 48:7171–7183Lovric M, Scholz F (1997) A model for the propagation of a redox reaction through microcrystals. J Solid State Electrochem 1:108–113Fitzgerald AG, Storey BE, Fabian D (1993) Quantitative microbeam analysis. Scottish Universities Sumer School in Physics and Institute of Physics Publishing, BristolDomĂ©nech-CarbĂł A (2015) Dating: an analytical task. ChemTexts 1:5Mairinger F, Schreiner M (1982) New methods of chemical analysis-a tool for the conservator. Science and Technology in the service of conservation, IIC, London, pp 5–13Malissa H, Benedetti-Pichler AA (1958) Anorganische qualitative Mikroanalyse. Springer, New YorkTertian R, Claisse F (1982) Principles of quantitative X-ray fluorescence analysis. Heyden, LondonMantler M, Schreiner M (2000) X-ray fluorescence spectrometry in art and archaeology. X-Ray Spectrom 29:3–17Scholz F (2015) Voltammetric techniques of analysis: the essentials. ChemTexts 1:17Inzelt G (2014) Crossing the bridge between thermodynamics and electrochemistry. From the potential of the cell reaction to the electrode potential. ChemTexts 1:2Milchev A (2016) Nucleation phenomena in electrochemical systems: thermodynamic concepts. ChemTexts 2:2Milchev A (2016) Nucleation phenomena in electrochemical systems: kinetic models. ChemTexts 2:4Seeber R, Zanardi C, Inzelt G (2015) Links between electrochemical thermodynamics and kinetics. ChemTexts 1:18Feist M (2015) Thermal analysis: basics, applications, and benefit. ChemTexts 1:8Stoiber RE, Morse SA (1994) Crystal identification with the polarizing microscope. Springer, BerlinGoldstein JI, Newbury DE, Echlin P, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer L, Michael JR (2003) Scanning electron microscopy and X-ray microanalysis. Plenum Press, New YorkDomĂ©nech-CarbĂł A, DomĂ©nech-CarbĂł MT, MĂĄs-BarberĂĄ X (2007) Identification of lead pigments in nanosamples from ancient paintings and polychromed sculptures using voltammetry of nanoparticles/atomic force microscopy. Talanta 71:1569–1579Reedy TJ, Reedy ChL (1988) Statistical analysis in art conservation research. The Getty Conservation Institute, Los AngelesEastaugh N, Walsh V, Chaplin T, Siddall R (2004) Pigment compendium, optical microscopy of historical pigments. Elsevier, OxfordFeller RL, Bayard M (1986) Terminology and procedures used in the systematic examination of pigment particles with polarizing microscope. In: Feller RL (ed) Artists’ pigment. A handbook of their history and characteristics, vol 1. National Gallery of Art, Washington, pp 285–298Feller RL (ed) (1986) Artists’ pigment. A handbook of their history and characteristics, vol 1. National Gallery of Art, WashingtonRoy A (ed) (1993) Artists’ pigments. A handbook of their history and characteristics, vol 2. National Gallery of Art, WashingtonFitzHugh EW (ed) (1997) Artists’ pigments. A handbook of their history and characteristics, vol 3. National Gallery of Art, WashingtonBerrie BH (ed) (2007) Artists’ pigment. A handbook of their history and characteristics, vol 4. National Gallery of Art, WashingtonHaynes WN (ed) (2015) CRC handbook for physics and chemistry, 96th edn. Taylor and Francis Group, UKFiedler I, Bayard MA (1986) Cadmium yellows, oranges and reds. In: Feller RL (ed) Artists’ pigment. A handbook of their history and characteristics, vol 1. National Gallery of Art, Washington, pp 65–108Domenech-CarbĂł MT, de Agredos Vazquez, Pascual ML, Osete-Cortina L, Domenech A, Guasch-FerrĂ© N, Manzanilla LR, Vidal C (2012) Characterization of Pre-hispanic cosmetics found in a burial of the ancient city of Teotihuacan (Mexico). J Archaeol Sci 39:1043–1062MĂŒhlethaler B, Thissen J (1993) Smalt. In: Roy A (ed) Artists’ pigments. A handbook of their history and characteristics, vol 2. National Gallery of Art, Washington, pp 113–130Musumarra G, Fichera M (1998) Chemometrics and cultural heritage. Chemometr Intell Lab Syst 44:363–372Hochleitner B, Schreiner M, Drakopoulos M, Snigireva I, Snigirev A (2005) Analysis of paint layers by light microscopy, scanning electron microscopy and synchrotron induced X-ray micro-diffraction. In: Van Grieken R, Janssens K (eds) Cultural heritage conservation and environment impact assessment by non-destructive testing and micro-analysis. AA Balkema Publishers, London, pp 171–182Ć varcovĂĄ S, Kočí E, Bezdička P, Hradil D, HradilovĂĄ J (2010) Evaluation of laboratory powder X-ray micro-diffraction for applications in the fields of cultural heritage and forensic science. Anal Bioanal Chem 398:1061–1076Van de Voorde L, Vekemans B, Verhaeven E, Tack P, DeWolf R, Garrevoet J, Vandenabeele P, Vincze L (2015) Analytical characterization of a new mobile X-ray fluorescence and X-ray diffraction instrument combined with a pigment identification case study. Spectrochim Acta B 110:14–19Hochleitner B, Desnica V, Mantler M, Schreiner M (2003) Historical pigments: a collection analyzed with X-ray diffraction analysis and X-ray fluorescence analysis in order to create a database. Spectrochim Acta B 58:641–649Middleton PS, Ospitali F, Di Lonardo F (2005) Case study: painters and decorators: Raman spectroscopic studies of five Romano-British villas and the Domus Coiedii at Suasa, Italy. In: Edwards HGM, Chalmers JM (eds) Raman spectroscopy in archaeology and art history. The Royal Society of Chemistry, Cambridge, pp 97–120Helwig K (1993) Iron oxide pigments: natural and synthetic. In: Roy A (ed) Artists’ pigments. A handbook of their history and characteristics, vol 2. National Gallery of Art, Washington, pp 39–95Silva CE, Silva LP, Edwards HGM, de Oliveira LFC (2006) Diffuse reflection FTIR spectral database of dyes and pigments. Anal Bioanal Chem 386:2183–2191Hummel DO (ed) (1985) Atlas of polymer and plastic analysis, vol 1, Polymers, structures and spectra. Hanser VCH, MĂŒnichhttp://www.irug.org (consulted: 1 Feb 2016)http://www.ehu.es/udps/database/database.html (consulted: 1 Feb 2016)Burgio L, Clark RJH (2001) Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim Acta A 57:1491–1521http://www.chem.ucl.ac.uk/resources/raman/speclib.html (consulted: 1 Feb 2016)Madariaga JM, Bersani D (2012) Special feature: Raman spectroscopy in art and archaeology. J Raman Spectrosc 43(11):1523–1844http://minerals.gps.caltech.edu/ (consulted: 1 Feb 2016)http://www.rruff.info (consulted: 1 Feb 2016)Frost RL, Martens WN, Rintoul L, Mahmutagic E, Kloprogge JT (2002) J Raman Spectrosc 33:252–259Smith D (2005) Overwiew: jewellery and precious stones. In: Edwards HGM, Chalmers JM (eds) Raman spectroscopy in archaeology and art history. The Royal Society of Chemistry, Cambridge, pp 335–378Weiner S, Bar-Yosef O (1990) States of preservation of bones from prehistoric sites in the Near East: a survey. J Archaeol Sci 17:187–196Chu V, Regev L, Weiner S, Boaretto E (2008) Differentiating between anthropogenic calcite in plaster, ash and natural calcite using infrared spectroscopy: implications in archaeology. J Archaeol Sci 35:905–911Beniash E, Aizenberg J, Addadi L, Weiner S (1997) Amorphous calcium carbonate transforms into calcite during sea-urchin larval spicule growth. Proc R Soc Lond Ser B 264:461–465Regev L, Poduska KM, Addadi L, Weiner S, Boaretto E (2010) Distinguishing between calcites formed by different mechanisms using infrared spectrometry: archaeological applications. J Archaeol Sci 37:3022–3029Farmer C (ed) (1974) The infrared spectra of mineral, Monograph 4. Mineralogical Society, LondonMadejovĂĄ J, KečkĂ©ĆĄ J, PĂĄlkovĂĄ H, Komadel P (2002) Identification of components in smectite/kaolinite mixtures. Clay Miner 37:377–388Ć ucha V, ƚrodoƄ J, Clauer N, Elsass F, Eberl DD, Kraus I, MadejovĂĄ J (2001) Weathering of smectite and illite–smectite under temperate climatic conditions. Clay Miner 36:403–419DomĂ©nech-CarbĂł A, DomĂ©nech-CarbĂł MT, LĂłpez-LĂłpez F, Valle-Algarra FM, Osete-Cortina L, Arcos-Von Haartman E (2013) Electrochemical characterization of egyptian blue pigment in wall paintings using the voltammetry of microparticles methodology. Electroanalysis 25:2621–2630DomĂ©nech-CarbĂł MT, Edwards HGM, DomĂ©nech-CarbĂł A, del Hoyo-MelĂ©ndez JM, de la Cruz-Cañizares J (2012) An authentication case study: Antonio Palomino vs. Vicente Guillo paintings in the vaulted ceiling of the Sant Joan del Mercat church (Valencia, Spain). J Raman Spectrosc 43:1250–1259Lovric M, Scholz F (1999) A model for the coupled transport of ions and electrons in redox conductive microcrystals. J Solid State Electrochem 3:172–175Oldham KB (1998) Voltammetry at a three phase junction. J Solid State Electrochem 2:367–377DomĂ©nech A, DomĂ©nech-CarbĂł MT, Gimeno-Adelantado JV, Bosch-Reig F, SaurĂ­-Peris MC, SĂĄnchez-Ramos S (2001) Electrochemical identification of iron oxide pigments (earths) from pictorial microsamples attached to graphite/polyester composite electrodes. Analyst 126:1764–1772DomĂ©nech A, DomĂ©nech-CarbĂł MT, Moya-Moreno MCM, Gimeno-Adelantado JV, Bosch-Reig F (2000) Identification of inorganic pigments from paintings and polychromed sculptures immobilized into polymer film electrodes by stripping differential pulse voltammetry. Anal Chim Acta 407:275–289DomĂ©nech-CarbĂł A, DomĂ©nech-CarbĂł MT, Valle-Algarra FM, Gimeno-Adelantado JV, Osete-Cortina L, Bosch-Reig F (2016) On-line database of voltammetric data of immobilized particles for identifying pigments and minerals in archaeometry, conservation and restoration (ELCHER database). Anal Chim Acta 927:1–12http://www.elcher.info (consulted: 1 July 2016)Scholz F, DomĂ©nech-CarbĂł A (2010) Special feature: electrochemistry for conservation science. J Solid State Electrochem 14Domenech-CarbĂł A, Domenech-CarbĂł MT, Edwards HGM (2007) Identification of earth pigment by hierarchical cluster applied to solid state voltammetry. Application to a severely damaged frescoes. Electroanalysis 19:1890–1900Domenech-CarbĂł A, Domenech-CarbĂł MT, VĂĄzquez de Agredos-Pascual ML (2006) Dehydroindigo: a new piece into the Maya Blue puzzle from the voltammetry of microparticles approach. J Phys Chem B 110:6027–6039DomĂ©nech-CarbĂł A, DomĂ©nech-CarbĂł MT, VĂĄzquez de Agredos-Pascual ML (2007) Chemometric study of Maya Blue from the voltammetry of microparticles approach. Anal Chem 79:2812–2821DomĂ©nech-CarbĂł A, DomĂ©nech-CarbĂł MT, VĂĄzquez de Agredos-Pascual ML (2011) From Maya Blue to ‘Maya Yellow’: a connection between ancient nanostructured materials from the voltammetry of microparticles. Angew Chem Int Edit 50:5741–5744DomĂ©nech-CarbĂł A, DomĂ©nech-CarbĂł MT, Vidal-Lorenzo C, VĂĄzquez de Agredos-Pascual ML (2012) Insights into the Maya Blue Technology: greenish pellets from the ancient city of La Blanca. Angew Chem Int Ed 51:700–703DomĂ©nech-CarbĂł A, DomĂ©nech-CarbĂł MT, Osete-Cortina L, Montoya N (2012) Application of solid-state electrochemistry techniques to polyfunctional organic-inorganic hybrid materials: the Maya Blue problem. Micropor Mesopor Mater 166:123–130DomĂ©nech-CarbĂł MT, Osete-Cortina L, DomĂ©nech-CarbĂł A, VĂĄzquez de Agredos-Pascual ML, Vidal-Lorenzo C (2014) Identification of indigoid compounds present in archaeological Maya blue by pyrolysis-silylation-gas chromatography–mass spectrometry. J Anal Appl Pyrol 105:355–36
    • 

    corecore