646 research outputs found

    Non-Fermi-liquid behavior at anti-ferromagnetic quantum critical point in heavy fermion system Ce(Cu1x_{1-x}Cox_x)2_2Ge2_2

    Full text link
    Polycrystalline samples of Ce(Cu1x_{1-x}Cox_x)2_2Ge2_2 were investigated by means of electrical resistivity ρ\rho(TT), magnetic susceptibility χ\chi(TT), specific heat CCp_p(TT) and thermo electric power SS(TT) measurements. The long-range antiferromagnetic (AFM) order, which set in at TTN_N = 4.1 K in CeCu2_2Ge2_2, is suppressed by non-iso-electronic cobalt (Co) doping at a critical value of the concentration xxc_c = 0.6, accompanied by non-Fermi liquid (NFL) behavior inferred from the power law dependence of heat capacity and susceptibility i.e. CC(TT)/TT and χ\chi(TT) \propto TT1+λ^{-1+\lambda} down to 0.4 K, along with a clear deviation from TT2^2 behavior of the electrical resistivity. However, we have not seen any superconducting phase in the quantum critical regime down to 0.4 K.Comment: 8 pages, 11 figure

    GdRh2_2Si2_2: An exemplary tetragonal system for antiferromagnetic order with weak in-plane anisotropy

    Full text link
    The anisotropy of magnetic properties commonly is introduced in textbooks using the case of an antiferromagnetic system with Ising type anisotropy. This model presents huge anisotropic magnetization and a pronounced metamagnetic transition and is well-known and well-documented both, in experiments and theory. In contrast, the case of an antiferromagnetic XX-YY system with weak in-plane anisotropy is only poorly documented. We studied the anisotropic magnetization of the compound GdRh2_2Si2_2 and found that it is a perfect model system for such a weak-anisotropy setting because the Gd3+^{3+} ions in GdRh2_2Si2_2 have a pure spin moment of S=7/2 which orders in a simple AFM structure with Q=(001){\bf Q} = (001). We observed experimentally in M(B)M(B) a continuous spin-flop transition and domain effects for field applied along the [100][100]- and the [110][110]-direction, respectively. We applied a mean field model for the free energy to describe our data and combine it with an Ising chain model to account for domain effects. Our calculations reproduce the experimental data very well. In addition, we performed magnetic X-ray scattering and X-ray magnetic circular dichroism measurements, which confirm the AFM propagation vector to be Q=(001){\bf Q} = (001) and indicate the absence of polarization on the rhodium atoms

    Effect of Ni-doping on magnetism and superconductivity in Eu0.5K0.5Fe2As2

    Full text link
    The effect of Ni-doping on the magnetism and superconductivity in Eu0.5K0.5Fe2As2 has been studied through a systematic investigation of magnetic and superconducting properties of Eu0.5K0.5(Fe1-xNix)2As2 (x = 0, 0.03, 0.05, 0.08 and 0.12) compounds by means of dc and ac magnetic susceptibilities, electrical resistivity and specific heat measurements. Eu0.5K0.5Fe2As2 is known to exhibit superconductivity with superconducting transition temperature Tc as high as 33 K. The Ni-doping leads to a rapid decrease in Tc; Tc is reduced to 23 K with 3% Ni-doping, and 8% Ni-doping suppresses the superconductivity to below 1.8 K. In 3% Ni-doped sample Eu0.5K0.5(Fe0.97Ni0.03)2As2 superconductivity coexists with short range ordering of Eu2+ magnetic moments at Tm ~ 6 K. The suppression of superconductivity with Ni-doping is accompanied with the emergence of a long range antiferromagnetic ordering with TN = 8.5 K and 7 K for Eu0.5K0.5(Fe0.92Ni0.08)2As2 and Eu0.5K0.5(Fe0.88Ni0.12)2As2, respectively. The temperature and field dependent magnetic measurements for x = 0.08 and 0.12 samples reflect the possibility of a helical magnetic ordering of Eu2 moments. We suspect that the helimagnetism of Eu spins could be responsible for the destruction of superconductivity as has been observed in Co-doped EuFe2As2. The most striking feature seen in the resistivity data for x = 0.08 is the reappearance of the anomaly presumably due to spin density wave transition at around 60 K. This could be attributed to the compensation of holes (K-doping at Eu-site) by the electrons (Ni-doping at Fe site). The anomaly associated with spin density wave further shifts to 200 K for x = 0.12 for which the electron doping has almost compensated the holes in the system.Comment: 9 pages, 10 figure

    Magnetic and superconducting properties on S-type single-crystal CeCu2_2Si2_2 probed by 63^{63}Cu nuclear magnetic resonance and nuclear quadrupole resonance

    Get PDF
    We have performed 63^{63}Cu nuclear magnetic resonance/nuclear quadrupole resonance measurements to investigate the magnetic and superconducting (SC) properties on a "superconductivity dominant" (SS-type) single crystal of CeCu2_2Si2_2. Although the development of antiferromagnetic (AFM) fluctuations down to 1~K indicated that the AFM criticality was close, Korringa behavior was observed below 0.8~K, and no magnetic anomaly was observed above TcT_{\rm c} \sim 0.6 K. These behaviors were expected in SS-type CeCu2_2Si2_2. The temperature dependence of the nuclear spin-lattice relaxation rate 1/T11/T_1 at zero field was almost identical to that in the previous polycrystalline samples down to 130~mK, but the temperature dependence deviated downward below 120~mK. In fact, 1/T11/T_1 in the SC state could be fitted with the two-gap s±s_{\pm}-wave rather than the two-gap s++s_{++}-wave model down to 90~mK. Under magnetic fields, the spin susceptibility in both directions clearly decreased below TcT_{\rm c}, indicative of the formation of spin singlet pairing. The residual part of the spin susceptibility was understood by the field-induced residual density of states evaluated from 1/T1T1/T_1T, which was ascribed to the effect of the vortex cores. No magnetic anomaly was observed above the upper critical field Hc2H_{c2}, but the development of AFM fluctuations was observed, indicating that superconductivity was realized in strong AFM fluctuations.Comment: 10 pages, 8 figure

    Similar temperature scale for valence changes in Kondo lattices with different Kondo temperatures

    Full text link
    The Kondo model predicts that both the valence at low temperatures and its temperature dependence scale with the characteristic energy T_K of the Kondo interaction. Here, we study the evolution of the 4f occupancy with temperature in a series of Yb Kondo lattices using resonant X-ray emission spectroscopy. In agreement with simple theoretical models, we observe a scaling between the valence at low temperature and T_K obtained from thermodynamic measurements. In contrast, the temperature scale T_v at which the valence increases with temperature is almost the same in all investigated materials while the Kondo temperatures differ by almost four orders of magnitude. This observation is in remarkable contradiction to both naive expectation and precise theoretical predictions of the Kondo model, asking for further theoretical work in order to explain our findings. Our data exclude the presence of a quantum critical valence transition in YbRh2Si2

    Scaling of the magnetic entropy and magnetization in YbRh_2(Si_{0.95}Ge_{0.05})_2

    Full text link
    The magnetic entropy of YbRh_2(Si_{0.95}Ge_{0.05})_2 is derived from low-temperature (T18T\geq 18 mK) specific heat measurements. Upon field-tuning the system to its antiferromagnetic quantum critical point unique temperature over magnetic field scaling is observed indicating the disintegration of heavy quasiparticles. The field dependence of the entropy equals the temperature dependence of the dc-magnetization as expected from the Maxwell relation. This proves that the quantum-critical fluctuations affect the thermal and magnetic properties in a consistent way.Comment: 6 pages, 2 figures, manuscript submitted to SCES2004 conferenc

    Pressure-induced change of the pairing symmetry in superconducting CeCu2Si2

    Full text link
    Low-temperature (T) heat-capacity measurements under hydrostatic pressure of up to p=2.1 GPa have been performed on single-crystalline CeCu2Si2. A broad superconducting (SC) region exists in the T-p phase diagram. In the low-pressure region antiferromagnetic spin fluctuations and in the high-pressure region valence fluctuations had previously been proposed to mediate Cooper pairing. We could identify these two distinct SC regions. We found different thermodynamic properties of the SC phase in both regions, supporting the proposal that different mechanisms might be implied in the formation of superconductivity.Comment: 4 pages, 5 figure

    Quasiquartet CEF ground state with possible quadrupolar ordering in the tetragonal compound YbRu2_{2}Ge2_{2}

    Full text link
    e have investigated the magnetic properties of YbRu2_{2}Ge2_{2} by means of magnetic susceptibility χ\chi(T), specific heat C(T) and electrical resistivity ρ\rho(T) measurements performed on flux grown single crystals. The Curie-Weiss behavior of χ\chi(T) along the easy plane, the large magnetic entropy at low temperatures and the weak Kondo like increase in ρ\rho(T) proves a stable trivalent Yb state. Anomalies in C(T), ρ\rho(T) and χ\chi(T) at T0_{0} = 10.2 K, T1_{1} = 6.5 K and T2_{2} = 5.7 K evidence complex ordering phenomena, T0_{0} being larger than the highest Yb magnetic ordering temperature found up to now. The magnetic entropy just above T0_{0} amounts to almost Rln4, indicating that the crystal electric field (CEF) ground state is a quasiquartet instead of the expected doublet. The behavior at T0_{0} is rather unusual and suggest that this transition is related to quadrupolar ordering, being a consequence of the CEF quasiquartet ground state. The combination of a quasiquartet CEF ground state, a high ordering temperature, and the relevance of quadrupolar interactions makes YbRu2_{2}Ge2_{2} a rather unique system among Yb based compounds.Comment: 11 pages, 5 figure, submitted to PRB rapi

    Low-temperature thermopower study of YbRh2Si2

    Full text link
    The heavy-fermion compound YbRh2Si2 exhibits an antiferromagnetic (AFM) phase transition at an extremely low temperature of TN = 70 mK. Upon applying a tiny magnetic field of Bc = 60 mT the AFM ordering is suppressed and the system is driven toward a field-induced quantum critical point (QCP). Here, we present low-temperature thermopower S(T) measurements of high-quality YbRh2Si2 single crystals down to 30 mK. S(T) is found negative with comparably large values in the paramagnetic state. In zero field no Landau-Fermi-liquid (LFL) like behavior is observed within the magnetically ordered phase. However, a sign change from negative to positive appears at lowest temperatures on the magnetic side of the QCP. For higher fields B > Bc a linear extrapolation of S to zero clearly evidences the recovery of LFL regime. The crossover temperature is sharply determined and coincides perfectly with the one derived from resistivity and specific heat investigations.Comment: LT25 conference proceedings in Journal of Physics: Conference Serie
    corecore