63,989 research outputs found

    Nonlinear surface plasmons

    Full text link
    We derive an asymptotic equation for quasi-static, nonlinear surface plasmons propagating on a planar interface between isotropic media. The plasmons are nondispersive with a constant linearized frequency that is independent of their wavenumber. The spatial profile of a weakly nonlinear plasmon satisfies a nonlocal, cubically nonlinear evolution equation that couples its left-moving and right-moving Fourier components. We prove short-time existence of smooth solutions of the asymptotic equation and describe its Hamiltonian structure. We also prove global existence of weak solutions of a unidirectional reduction of the asymptotic equation. Numerical solutions show that nonlinear effects can lead to the strong spatial focusing of plasmons. Solutions of the unidirectional equation appear to remain smooth when they focus, but it is unclear whether or not focusing can lead to singularity formation in solutions of the bidirectional equation

    Implications of Anomalous U(1) Symmetry in Unified Models: the Flipped SU(5) x U(1) Paradigm

    Get PDF
    A generic feature of string-derived models is the appearance of an anomalous Abelian U(1)_A symmetry which, among other properties, constrains the Yukawa couplings and distinguishes the three families from each other. In this paper, we discuss in a model-independent way the general constraints imposed by such a U(1)_A symmetry on fermion masses, R-violating couplings and proton-decay operators in a generic flipped SU(5) x U(1)' model. We construct all possible viable fermion mass textures and give various examples of effective low-energy models which are distinguished from each other by their different predictions for B-, L- and R-violating effects. We pay particular attention to predictions for neutrino masses, in the light of the recent Super-Kamiokande data.Comment: 28 pages, reference adde

    Raising the Dead: Clues to Type Ia Supernova Physics from the Remnant 0509-67.5

    Full text link
    We present Chandra X-ray observations of the young supernova remnant (SNR) 0509-67.5 in the Large Magellanic Cloud (LMC), believed to be the product of a Type Ia supernova (SN Ia). The remnant is very round in shape, with a distinct clumpy shell-like structure. Our Chandra data reveal the remnant to be rich in silicon, sulfur, and iron. The yields of our fits to the global spectrum confirm that 0509-67.5 is the remnant of an SN Ia and show a clear preference for delayed detonation explosion models for SNe Ia. We study the spectrum of the single brightest isolated knot in the remnant and find that it is enhanced in iron by a factor of roughly two relative to the global remnant abundances. This feature, along with similar knots seen in Tycho's SNR, argues for the presence of modest small-scale composition inhomogeneities in SNe Ia. The presence of both Si and Fe, with abundance ratios that vary from knot to knot, indicates that these came from the transition region between the Si- and Fe-rich zones in the exploded star, possibly as a result of energy input to the ejecta at late times due to the radioactive decay of 56Ni and 56Co. Two cases for the continuum emission from the global spectrum were modeled: one where the continuum is dominated by hydrogen thermal bremsstrahlung radiation; another where the continuum arises from non-thermal synchrotron radiation. The former case requires a relatively large value for the ambient density (~1 cm^-3). Another estimate of the ambient density comes from using the shell structure of the remnant in the context of dynamical models. This requires a much lower value for the density (<0.05 cm^-3) which is more consistent with other evidence known about 0509-67.5. We therefore conclude that the bulk of the continuum emission from 0509-67.5 has a non-thermal origin.Comment: 34 pages, 9 figures (1 color), accepted to ApJ (10 June 2004 issue); correction made to calculation of magnetic field, small sentence change

    Pseudo-potential treatment of two aligned dipoles under external harmonic confinement

    Get PDF
    Dipolar Bose and Fermi gases, which are currently being studied extensively experimentally and theoretically, interact through anisotropic, long-range potentials. Here, we replace the long-range potential by a zero-range pseudo-potential that simplifies the theoretical treatment of two dipolar particles in a harmonic trap. Our zero-range pseudo-potential description reproduces the energy spectrum of two dipoles interacting through a shape-dependent potential under external confinement very well, provided that sufficiently many partial waves are included, and readily leads to a classification scheme of the energy spectrum in terms of approximate angular momentum quantum numbers. The results may be directly relevant to the physics of dipolar gases loaded into optical lattices.Comment: 9 pages, 4 figure

    Impact of Reionization on the Stellar Populations of Nearby Dwarf Galaxies

    Full text link
    Cold dark matter models for galaxy formation predict that low-mass systems will be the first sites of star formation. As these objects have shallow gravitational potential wells, the subsequent growth of their stellar populations may be halted by heating and gas loss due to reionization. This effect has been suggested to have profoundly influenced properties of present-day dwarf galaxies, including their stellar populations and even survival as visible galaxies. In this Letter we draw on results from quantitative studies of Local Group dwarf galaxy star formation histories, especially for Milky Way satellites, to show that no clear signature exists for a widespread evolutionary impact from reionization. All nearby dwarf galaxies studied in sufficient detail contain ancient populations indistinguishable in age from the oldest Galactic globular clusters. Ancient star formation activity proceeded over several Gyr, and some dwarf spheroidal galaxies even experienced fairly continuous star formation until just a few Gyr ago. Despite their uniformly low masses, their star formation histories differ considerably. The evolutionary histories of nearby dwarf galaxies appear to reflect influences from a variety of local processes rather than a dominant effect from reionization.Comment: Accepted by The Astrophysical Journal Letters. 5 pages, one figur

    Roles of Free Electrons and H2O2 in the Optical Breakdown-Induced Photochemical Reduction of Aqueous [AuCl4]-

    Get PDF
    Free electrons and H2O2 formed in an optical breakdown plasma are found to directly control the kinetics of [AuCl4]− reduction to form Au nanoparticles (AuNPs) during femtosecond laser-assisted synthesis of AuNPs. The formation rates of both free electrons and H2O2 strongly depend on the energy and duration of the 800 nm laser pulses over the ranges of 10−2400 μJ and 30−1500 fs. By monitoring the conversion of [AuCl4]− to AuNPs using in situ UV−vis spectroscopy during laser irradiation, the first- and second-order rate constants in the autocatalytic rate law, k1 and k2, were extracted and compared to the computed free electron densities and experimentally measured H2O2 formation rates. For laser pulse energies of 600 μJ and lower at all pulse durations, the first-order rate constant, k1, was found to be directly proportional to the theoretically calculated plasma volume, in which the electron density exceeds the threshold value of 1.8 × 1020 cm−3. The second-order rate constant, k2, was found to correlate with the measured H2O2 formation rate at all pulse energies and durations, resulting in the empirical relationship k2 ≈ H2O20.5. We have demonstrated that the relative composition of free electrons and H2O2 in the optical breakdown plasma may be controlled by changing the pulse energy and duration, which may make it possible to tune the size and dispersity of AuNPs and other metal nanoparticle products synthesized with femtosecond laser-based methods

    Formation of rectifier with gold nanoclusters

    Get PDF
    Gold nanoclusters encapsulated with organic molecules are of great interest for its possible applications in the fields of molecular electronics, catalysis and medical science. Here we demonstrate that monolayer and bilayer films of thiol-capped gold nanoclusters can exhibit diode-like properties provided controlled spatial asymmetry exist between two tunnel junctions used to connect a thiol capped gold nanoclusters. Current-voltage characteristics of this rectifier were obtained from conducting probe atomic force microscopy measurements and also from conventional two probe resistance measurements. Systematic x-ray reflectivity and atomic force microscopy measurements were carried out to characterize the spatial asymmetry introduced by a monolayer of fatty acid salt gadolinium stearate used to deposit thiol-capped gold nanocluster molecules on hydrophilic SiO2-Si(001) substrate by Langmuir Blodgett technique. This information was used to explain prominent rectification observed in these nano-structured films.Comment: 13 pages, 3 figure
    • …
    corecore