5,921 research outputs found

    Solar System: Sifting through the debris

    Get PDF
    A quadrillion previously unnoticed small bodies beyond Neptune have been spotted as they dimmed X-rays from a distant source. Models of the dynamics of debris in the Solar System's suburbs must now be reworked.Comment: 3 pages, 1 figure; Nature News and Views on Chang et al. 2006, Nature, 442, 660-66

    Nucleosynthesis in the Early Galaxy

    Full text link
    Recent observations of r-process-enriched metal-poor star abundances reveal a non-uniform abundance pattern for elements Z47Z\leq47. Based on non-correlation trends between elemental abundances as a function of Eu-richness in a large sample of metal-poor stars, it is shown that the mixing of a consistent and robust light element primary process (LEPP) and the r-process pattern found in r-II metal-poor stars explains such apparent non-uniformity. Furthermore, we derive the abundance pattern of the LEPP from observation and show that it is consistent with a missing component in the solar abundances when using a recent s-process model. As the astrophysical site of the LEPP is not known, we explore the possibility of a neutron capture process within a site-independent approach. It is suggested that scenarios with neutron densities nn1013n_{n}\leq10^{13} cm3cm^{-3} or in the range nn1024n_{n}\geq10^{24} cm3cm^{-3} best explain the observations.Comment: 28 pages, 7 Postscript figures. To be published in The Astrophysical Journa

    Performance of a repetitive task by aged rats leads to median neuropathy and spinal cord inflammation with associated sensorimotor declines

    Get PDF
    Epidemiological studies have demonstrated a relationship between advancing age and susceptibility to risk factors for median neuropathies and musculoskeletal disorders. In this study, we determined if performance of a voluntary reaching task by aged rats induced sensorimotor declines, median nerve dysfunction and increased inflammatory cytokines in peripheral nerves, muscle and spinal cord neurons. Aged (14 mon) rats were trained for 15 min/day for 4 weeks to learn a high repetition, low force (HRLF) task (19 reaches/min; 15% maximum pulling force). Aged task rats performed the task for 2 h/day, 3 days/wk, for 12 weeks (until they were 18 mon of age). No behavioral changes were detected in normal controls (NC) or food-restricted controls (FR C) as they aged. However, grip strength declined in HRLF rats in weeks 6-12 (P\u3c0.01 each) and 12-week trained-only rats (TR; P\u3c0.05), compared to NC. Mechanical hypersensitivity was present in weeks 9 and 12 HRLF reach limb forepaws (P\u3c0.01 and P\u3c0.05, respectively), and 12-week HRLF support limb forepaws (P\u3c0.01) and hindpaws (P=0.03), compared to NC. By week 12, median nerve conduction velocity declined 23%, bilaterally, in HRLF (P\u3c0.001 each), and 13% in TR (P\u3c0.05), compared to NC. Tumor necrosis factor alpha (TNFα) increased in 12-week HRLF muscle (P=0.005), median nerve (P\u3c0.01), and neurons in superficial lamina of HRLF cervical spinal cords (P\u3c0.01), compared to NC. interleukin 1 beta (IL1β) also increased in superficial lamina neurons (P\u3c0.01). Loss of grip strength was correlated with median nerve conduction slowing (r=0.70) as well as increased nerve and muscle TNFα (r=-0.38 and r=-0.41, respectively); decrease in forepaw withdrawal thresholds was correlated with median nerve conduction slowing (r=0.81), increased nerve TNFα (r=-0.59), and increased TNFα and IL1β in neurons in spinal cord dorsal horns (r=-0.52 and r=-0.47, respectively). Thus, aged rats performing a repetitive task exhibited sensorimotor declines that were associated with decreased median nerve conduction, and increased pro-inflammatory cytokines in the median nerve and cervical spinal cord neurons

    Testing a model of antecedents and consequences of defensive pessimism and self-handicapping in school physical education

    Get PDF
    There has been very limited research on the use of self-worth protection strategies in the achievement context of school physical education (PE). Thus, this study aimed to examine some antecedents and consequences of defensive pessimism and self-handicapping. The sample comprised 534 (females n = 275; males n = 259) British pupils recruited from two schools who responded to established questionnaires. Results of structural equation modelling analysis indicated that self-handicapping and defensive pessimism were positively predicted by fear of failure and negatively predicted by competence valuation. In addition, defensive pessimism was negatively predicted by physical self-concept. In turn, defensive pessimism negatively predicted enjoyment in PE and intentions to participate in future optional PE programs. Self-handicapping did not predict enjoyment or intentions. Results from multi-sample structural equation modelling showed the specified model to be largely invariant across males and females. The findings indicate that although both strategies aim to protect one’s self-worth, some of their antecedents and consequences in PE may differ

    Atomistic modeling of amorphous silicon carbide: An approximate first-principles study in constrained solution space

    Get PDF
    Localized basis ab initio molecular dynamics simulation within the density functional framework has been used to generate realistic configurations of amorphous silicon carbide (a-SiC). Our approach consists of constructing a set of smart initial configurations that conform essential geometrical and structural aspects of the materials obtained from experimental data, which is subsequently driven via first-principles force-field to obtain the best solution in a reduced solution space. A combination of a priori information (primarily structural and topological) along with the ab-initio optimization of the total energy makes it possible to model large system size (1000 atoms) without compromising the quantum mechanical accuracy of the force-field to describe the complex bonding chemistry of Si and C. The structural, electronic and the vibrational properties of the models have been studied and compared to existing theoretical models and available data from experiments. We demonstrate that the approach is capable of producing large, realistic configurations of a-SiC from first-principles simulation that display excellent structural and electronic properties of a-SiC. Our study reveals the presence of predominant short-range order in the material originating from heteronuclear Si-C bonds with coordination defect concentration as small as 5% and the chemical disorder parameter of about 8%.Comment: 16 pages, 7 figure

    Systematic and Causal Corrections to the Coherent Potential Approximation

    Get PDF
    The Dynamical Cluster Approximation (DCA) is modified to include disorder. The DCA incorporates non-local corrections to local approximations such as the Coherent Potential Approximation (CPA) by mapping the lattice problem with disorder, and in the thermodynamic limit, to a self-consistently embedded finite-sized cluster problem. It satisfies all of the characteristics of a successful cluster approximation. It is causal, preserves the point-group and translational symmetry of the original lattice, recovers the CPA when the cluster size equals one, and becomes exact as NcN_c\to\infty. We use the DCA to study the Anderson model with binary diagonal disorder. It restores sharp features and band tailing in the density of states which reflect correlations in the local environment of each site. While the DCA does not describe the localization transition, it does describe precursor effects of localization.Comment: 11 pages, LaTeX, and 11 PS figures, to appear in Phys. Rev. B. Revised version with typos corrected and references adde

    Shell Model Study of the Double Beta Decays of 76^{76}Ge, 82^{82}Se and 136^{136}Xe

    Get PDF
    The lifetimes for the double beta decays of 76^{76}Ge, 82^{82}Se and 136^{136}Xe are calculated using very large shell model spaces. The two neutrino matrix elements obtained are in good agreement with the present experimental data. For <1<1 eV we predict the following upper bounds to the half-lives for the neutrinoless mode: T1/2(0ν)(Ge)>1.851025yr.T^{(0\nu)}_{1/2}(Ge) > 1.85\,10^{25} yr., T1/2(0ν)(Se)>2.361024yr.T^{(0\nu)}_{1/2}(Se) > 2.36\,10^{24} yr. and T1/2(0ν)(Xe)>1.211025yrT^{(0\nu)}_{1/2}(Xe) > 1.21\,10^{25} yr. These results are the first from a new generation of Shell Model calculations reaching O(108^{8}) dimensions

    Long-lived space observatories for astronomy and astrophysics

    Get PDF
    NASA's plan to build and launch a fleet of long-lived space observatories that include the Hubble Space Telescope (HST), the Gamma Ray Observatory (GRO), the Advanced X Ray Astrophysics Observatory (AXAF), and the Space Infrared Telescope Facility (SIRTF) are discussed. These facilities are expected to have a profound impact on the sciences of astronomy and astrophysics. The long-lived observatories will provide new insights about astronomical and astrophysical problems that range from the presence of planets orbiting nearby stars to the large-scale distribution and evolution of matter in the universe. An important concern to NASA and the scientific community is the operation and maintenance cost of the four observatories described above. The HST cost about 1.3billion(1984dollars)tobuildandisestimatedtorequire1.3 billion (1984 dollars) to build and is estimated to require 160 million (1986 dollars) a year to operate and maintain. If HST is operated for 20 years, the accumulated costs will be considerably more than those required for its construction. Therefore, it is essential to plan carefully for observatory operations and maintenance before a long-lived facility is constructed. The primary goal of this report is to help NASA develop guidelines for the operations and management of these future observatories so as to achieve the best possible scientific results for the resources available. Eight recommendations are given
    corecore