1,861 research outputs found

    Evolution of transport properties of BaFe2-xRuxAs2 in a wide range of isovalent Ru substitution

    Full text link
    The effects of isovalent Ru substitution at the Fe sites of BaFe2-xRuxAs2 are investigated by measuring resistivity and Hall coefficient on high-quality single crystals in a wide range of doping (0 < x < 1.4). Ru substitution weakens the antiferromagnetic (AFM) order, inducing superconductivity for relatively high doping level of 0.4 < x < 0.9. Near the AFM phase boundary, the transport properties show non-Fermi-liquid-like behaviors with a linear-temperature dependence of resistivity and a strong temperature dependence of Hall coefficient with a sign change. Upon higher doping, however, both of them recover conventional Fermi-liquid behaviors. Strong doping dependence of Hall coefficient together with a small magnetoresistance suggest that the anomalous transport properties can be explained in terms of anisotropic charge carrier scattering due to interband AFM fluctuations rather than a conventional multi-band scenario.Comment: 7 pages, 6 figures, submitted to Phys. Rev.

    Quantum Hall Ferromagnetism in a Two-Dimensional Electron System

    Full text link
    Experiments on a nearly spin degenerate two-dimensional electron system reveals unusual hysteretic and relaxational transport in the fractional quantum Hall effect regime. The transition between the spin-polarized (with fill fraction ν=1/3\nu = 1/3) and spin-unpolarized (ν=2/5\nu = 2/5) states is accompanied by a complicated series of hysteresis loops reminiscent of a classical ferromagnet. In correlation with the hysteresis, magnetoresistance can either grow or decay logarithmically in time with remarkable persistence and does not saturate. In contrast to the established models of relaxation, the relaxation rate exhibits an anomalous divergence as temperature is reduced. These results indicate the presence of novel two-dimensional ferromagnetism with a complicated magnetic domain dynamic.Comment: 15 pages, 5 figure

    Electron-hole asymmetry in Co- and Mn-doped SrFe2As2

    Full text link
    Phase diagram of electron and hole-doped SrFe2As2 single crystals is investigated using Co and Mn substitution at the Fe-sites. We found that the spin-density-wave state is suppressed by both dopants, but the superconducting phase appears only for Co (electron)-doping, not for Mn (hole)-doping. Absence of the superconductivity by Mn-doping is in sharp contrast to the hole-doped system with K-substitution at the Sr sites. Distinct structural change, in particular the increase of the Fe-As distance by Mn-doping is important to have a magnetic and semiconducting ground state as confirmed by first principles calculations. The absence of electron-hole symmetry in the Fe-site-doped SrFe2As2 suggests that the occurrence of high-Tc superconductivity is sensitive to the structural modification rather than the charge doping.Comment: 7 pages, 6 figure

    Entanglement witnesses arising from Choi type positive linear maps

    Full text link
    We construct optimal PPTES witnesses to detect 333\otimes 3 PPT entangled edge states of type (6,8)(6,8) constructed recently \cite{kye_osaka}. To do this, we consider positive linear maps which are variants of the Choi type map involving complex numbers, and examine several notions related to optimality for those entanglement witnesses. Through the discussion, we suggest a method to check the optimality of entanglement witnesses without the spanning property.Comment: 18 pages, 4 figures, 1 tabl

    MOVING TOWARD OPEN GEOSPATIAL SYSTEMS: THE UN OPEN GIS INITIATIVE

    Get PDF
    Abstract. The UN Open GIS Initiative is an ongoing Partnership Initiative leaded by the United Nations Geospatial Operations. The Initiative, established in March 2016, is supported by several UN Member States, UN Field Missions, UN Agencies and technology contributing partners (international organizations, academia, NGOs, and the private sector) and takes full advantage of their expertise.The target is the creation of an extended spatial data infrastructure that meets the requirements of the UN Secretariat (including UN field missions and regional commissions), and then expands to UN agencies, UN operating partners and developing countries. The paper presents the activities done in the past year and the status of the Initiative

    Dimerization-Induced Fermi-Surface Reconstruction in IrTe2

    Get PDF
    We report a de Haas-van Alphen (dHvA) oscillation study on IrTe2 single crystals showing complex dimer formations. By comparing the angle dependence of dHvA oscillations with band structure calculations, we show distinct Fermi surface reconstruction induced by a 1/5-type and a 1/8-type dimerizations. This verifies that an intriguing quasi-two-dimensional conducting plane across the layers is induced by dimerization in both cases. A phase transition to the 1/8 phase with higher dimer density reveals that local instabilities associated with intra-and interdimer couplings are the main driving force for complex dimer formations in IrTe2.X11149sciescopu

    A Wideband, Low-Noise Superconducting Amplifier with High Dynamic Range

    Get PDF
    Amplifiers are ubiquitous in electronics and play a fundamental role in a wide range of scientific measurements. From a user's perspective, an ideal amplifier has very low noise, operates over a broad frequency range, and has a high dynamic range - it is capable of handling strong signals with little distortion. Unfortunately, it is difficult to obtain all of these characteristics simultaneously. For example, modern transistor amplifiers offer multi-octave bandwidths and excellent dynamic range. However, their noise remains far above the fundamental limit set by the uncertainty principle of quantum mechanics. Parametric amplifiers, which predate transistor amplifiers and are widely used in optics, exploit a nonlinear response to transfer power from a strong pump tone to a weak signal. If the nonlinearity is purely reactive, ie. nondissipative, in theory the amplifier noise can reach the quantum-mechanical limit. Indeed, microwave frequency superconducting Josephson parametric amplifiers do approach the quantum limit, but generally are narrow band and have very limited dynamic range. In this paper, we describe a superconducting parametric amplifier that overcomes these limitations. The amplifier is very simple, consisting only of a patterned metal film on a dielectric substrate, and relies on the nonlinear kinetic inductance of a superconducting transmission line. We measure gain extending over 2 GHz on either side of an 11.56 GHz pump tone, and we place an upper limit on the added noise of the amplifier of 3.4 photons at 9.4 GHz. Furthermore, the dynamic range is very large, comparable to microwave transistor amplifiers, and the concept can be applied throughout the microwave, millimeter-wave and submillimeter-wave bands.Comment: 15 pages, 4 figures + supplementary informatio

    Oxide two-dimensional electron gas with high mobility at room-temperature

    Get PDF
    The prospect of 2‐dimensional electron gases (2DEGs) possessing high mobility at room temperature in wide‐bandgap perovskite stannates is enticing for oxide electronics, particularly to realize transparent and high‐electron mobility transistors. Nonetheless only a small number of studies to date report 2DEGs in BaSnO(3)‐based heterostructures. Here, 2DEG formation at the LaScO(3)/BaSnO(3) (LSO/BSO) interface with a room‐temperature mobility of 60 cm(2) V(−1) s(−1) at a carrier concentration of 1.7 × 10(13) cm(–2) is reported. This is an order of magnitude higher mobility at room temperature than achieved in SrTiO(3)‐based 2DEGs. This is achieved by combining a thick BSO buffer layer with an ex situ high‐temperature treatment, which not only reduces the dislocation density but also produces a SnO(2)‐terminated atomically flat surface, followed by the growth of an overlying BSO/LSO interface. Using weak beam dark‐field transmission electron microscopy imaging and in‐line electron holography technique, a reduction of the threading dislocation density is revealed, and direct evidence for the spatial confinement of a 2DEG at the BSO/LSO interface is provided. This work opens a new pathway to explore the exciting physics of stannate‐based 2DEGs at application‐relevant temperatures for oxide nanoelectronics

    Carbon lock-in through capital stock inertia associated with weak near-term climate policies

    Get PDF
    Stringent long-term climate targets necessitate a limit on cumulative emissions in this century for which sufficient policy signals are lacking. Using nine energy-economy models, we explore how policies pursued during the next two decades impact long-term transformation pathways towards stringent long-term climate targets. Less stringent near-term policies (i.e., those with larger emissions) consume more of the long-term cumulative emissions budget in the 2010-2030 period, which increases the likelihood of overshooting the budget and the urgency of reducing GHG emissions after 2030. Furthermore, the larger near-term GHG emissions associated with less stringent policies are generated primarily by additional coal-based electricity generation. Therefore, to be successful in meeting the long-term target despite near-term emissions reductions that are weaker than those implied by cost-optimal mitigation pathways, models must prematurely retire significant coal capacity while rapidly ramping up low-carbon technologies between 2030 and 2050 and remove large quantities of CO2 from the atmosphere in the latter half of the century. While increased energy efficiency lowers mitigation costs considerably, even with weak near-term policies, it does not substantially reduce the short-term reliance on coal electricity. However, increased energy efficiency does allow the energy system more flexibility in mitigating emissions and, thus, facilitates the post-2030 transition
    corecore