62,437 research outputs found

    Ground State Properties of the Doped 3-Leg t-J Ladder

    Full text link
    Results for a doped 3-leg t-J ladder obtained using the density matrix renormalization group are reported. At low hole doping, the holes form a dilute gas with a uniform density. The momentum occupation of the odd band shows a sharp decrease at a large value of k_F similar to the behavior of a lightly doped t-J chain, while the even modes appear gapped. The spin-spin correlations decay as a power law consistent with the absence of a spin gap, but the pair field correlations are negligible. At larger doping we find evidence for a spin gap and as x increases further we find 3-hole diagonal domain walls. In this regime there are pair field correlations and the internal pair orbital has d_x^2-y^2 - like symmetry. However, the pair field correlations appear to fall exponentially at large distances.Comment: 14 pages, 11 postscript figure

    Comment on "Kagome Lattice Antiferromagnet Stripped to Its Basics"

    Full text link
    Density matrix renormalization group (DMRG) calculations on large systems (up to 3096 spins) indicate that the ground state of the Heisenberg model on a 3-chain Kagome strip is spontaneously dimerized. This system has degenerate ground states and a gap to triplet and singlet excitations. These results are in direct contradiction with recent results of Azaria et al (Phys. Rev. Lett. 81, 1694 (1998)) and suggest a need for a reexamination of the underlying field theory.Comment: 1 page, submitted to PR

    Energetics of Domain Walls in the 2D t-J model

    Full text link
    Using the density matrix renormalization group, we calculate the energy of a domain wall in the 2D t-J model as a function of the linear hole density \rho_\ell, as well as the interaction energy between walls, for J/t=0.35. Based on these results, we conclude that the ground state always has domain walls for dopings 0 < x < 0.3. For x < 0.125, the system has (1,0) domain walls with \rho_\ell ~ 0.5, while for 0.125 < x < 0.17, the system has a possibly phase-separated mixture of walls with \rho_\ell ~ 0.5 and \rho_\ell =1. For x > 0.17, there are only walls with \rho_\ell =1. For \rho_\ell = 1, diagonal (1,1) domain walls have very nearly the same energy as (1,0) domain walls.Comment: Several minor changes. Four pages, four encapsulated figure

    SHEEP: The Search for the High Energy Extragalactic Population

    Full text link
    We present the SHEEP survey for serendipitously-detected hard X-ray sources in ASCA GIS images. In a survey area of 40\sim 40 deg2^{2}, 69 sources were detected in the 5-10 keV band to a limiting flux of 1013\sim 10^{-13} erg cm2^{-2} s1^{-1}. The number counts agree with those obtained by the similar BeppoSAX HELLAS survey, and both are in close agreement with ASCA and BeppoSAX 2-10 keV surveys. Spectral analysis of the SHEEP sample reveals that the 2-10 and 5-10 keV surveys do not sample the same populations, however, as we find considerably harder spectra, with an average Γ1.0\Gamma\sim1.0 assuming no absorption. The implication is that the agreement in the number counts is coincidental, with the 5-10 keV surveys gaining approximately as many hard sources as they lose soft ones, when compared to the 2-10 keV surveys. This is hard to reconcile with standard AGN ``population synthesis'' models for the X-ray background, which posit the existence of a large population of absorbed sources. We find no evidence of the population hardening at faint fluxes, with the exception that the few very brightest objects are anomalously soft. 53 of the SHEEP sources have been covered by ROSAT in the pointed phase. Of these 32 were detected. An additional 3 were detected in the RASS. As expected the sources detected with ROSAT are systematically softer than those detected with ASCA alone, and of the sample as a whole (truncated).Comment: 36 pages, 7 figs, to appear in Ap

    Pairing Correlations on t-U-J Ladders

    Full text link
    Pairing correlations on generalized t-U-J two-leg ladders are reported. We find that the pairing correlations on the usual t-U Hubbard ladder are significantly enhanced by the addition of a nearest-neighbor exchange interaction J. Likewise, these correlations are also enhanced for the t-J model when the onsite Coulomb interaction is reduced from infinity. Moreover, the pairing correlations are larger on a t-U-J ladder than on a t-Jeff ladder in which Jeff has been adjusted so that the two models have the same spin gap at half-filling. This enhancement of the pairing correlations is associated with an increase in the pair-binding energy and the pair mobility in the t-U-J model and point to the importance of the charge transfer nature of the cuprate systems

    Pretreatment cognitive and neural differences between sapropterin dihydrochloride responders and non-responders with phenylketonuria

    Get PDF
    Sapropterin dihydrochloride (BH4) reduces phenylalanine (Phe) levels and improves white matter integrity in a subset of individuals with phenylketonuria (PKU) known as “responders.” Although prior research has identified biochemical and genotypic differences between BH4 responders and non-responders, cognitive and neural differences remain largely unexplored. To this end, we compared intelligence and white matter integrity prior to treatment with BH4 in 13 subsequent BH4 responders with PKU, 16 subsequent BH4 non-responders with PKU, and 12 healthy controls. Results indicated poorer intelligence and white matter integrity in non-responders compared to responders prior to treatment. In addition, poorer white matter integrity was associated with greater variability in Phe across the lifetime in non-responders but not in responders. These results underscore the importance of considering PKU as a multi-faceted, multi-dimensional disorder and point to the need for additional research to delineate characteristics that predict response to treatment with BH4

    Persistence and Memory in Patchwork Dynamics for Glassy Models

    Get PDF
    Slow dynamics in disordered materials prohibits direct simulation of their rich nonequilibrium behavior at large scales. "Patchwork dynamics" is introduced to mimic relaxation over a very broad range of time scales by equilibrating or optimizing directly on successive length scales. This dynamics is used to study coarsening and to replicate memory effects for spin glasses and random ferromagnets. It is also used to find, with high confidence, exact ground states in large or toroidal samples.Comment: 4 pages, 4 figures; reference correctio

    Patterns of link reciprocity in directed networks

    Full text link
    We address the problem of link reciprocity, the non-random presence of two mutual links between pairs of vertices. We propose a new measure of reciprocity that allows the ordering of networks according to their actual degree of correlation between mutual links. We find that real networks are always either correlated or anticorrelated, and that networks of the same type (economic, social, cellular, financial, ecological, etc.) display similar values of the reciprocity. The observed patterns are not reproduced by current models. This leads us to introduce a more general framework where mutual links occur with a conditional connection probability. In some of the studied networks we discuss the form of the conditional connection probability and the size dependence of the reciprocity.Comment: Final version accepted for publication on Physical Review Letter
    corecore