
Syracuse University Syracuse University 

SURFACE SURFACE 

Physics College of Arts and Sciences 

8-10-2007 

Persistence and Memory in Patchwork Dynamics for Glassy Persistence and Memory in Patchwork Dynamics for Glassy 

Models Models 

Alan Middleton 
Syracuse University 

Creighton K. Thomas 
Syracuse University 

Olivia L. White 
Massachusetts Institute of Technology 

Follow this and additional works at: https://surface.syr.edu/phy 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Middleton, Alan; Thomas, Creighton K.; and White, Olivia L., "Persistence and Memory in Patchwork 
Dynamics for Glassy Models" (2007). Physics. 179. 
https://surface.syr.edu/phy/179 

This Article is brought to you for free and open access by the College of Arts and Sciences at SURFACE. It has been 
accepted for inclusion in Physics by an authorized administrator of SURFACE. For more information, please contact 
surface@syr.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Syracuse University Research Facility and Collaborative Environment

https://core.ac.uk/display/215692819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/phy
https://surface.syr.edu/cas
https://surface.syr.edu/phy?utm_source=surface.syr.edu%2Fphy%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=surface.syr.edu%2Fphy%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/phy/179?utm_source=surface.syr.edu%2Fphy%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


ar
X

iv
:0

70
8.

06
83

v2
  [

co
nd

-m
at

.d
is

-n
n]

  1
0 

A
ug

 2
00

7

Persistence and Memory in Patchwork Dynamics for Glassy Models

Creighton K. Thomas,1 Olivia L. White,2 and A. Alan Middleton1

1Department of Physics, Syracuse University, Syracuse, NY 13244, USA and
2Physics Department, Massachusetts Institute of Technology, Cambridge, MA 02139

Slow dynamics in disordered materials prohibits direct simulation of their rich nonequilibrium
behavior at large scales. “Patchwork dynamics” is introduced to mimic relaxation over a very
broad range of time scales by equilibrating or optimizing directly on successive length scales. This
dynamics is used to study coarsening and to replicate memory effects for spin glasses and random
ferromagnets. It is also used to find, with high confidence, exact ground states in large or toroidal
samples.

The term “spin glass” refers both to experimental dis-
ordered magnetic systems and to theoretical models with
enough randomness and frustration in their interactions
to preclude conventional magnetic order. The exper-
imental systems exhibit a complex cluster of history-
dependent nonequilibrium effects [1, 2]. For example,
while a spin glass is “aged” at fixed temperature, its mag-
netic susceptibility slowly changes, even after waits 20
orders of magnitude longer than the time for single spin
reorientation. Upon further cooling, the material “reju-
venates”: its susceptibility reverts to what it would have
been without the wait. But amazingly, the system does
retain a “memory” of its history and when temperature
returns to that at which aging took place, susceptibility
nears its aged value. In fact, waits at multiple tempera-
tures can be stored and recovered in [3]. Similar effects
are seen in a variety of experimental systems and multi-
ple explanations have been proposed [2, 4]. Yet despite
thirty years of study, the nature of spin-glass dynam-
ics – and of aging and memory effects in other “glassy”
materials – remains controversial and ill-understood. In
particular, how these effects are related to the temporal
evolution of correlations is an open question.

In this paper, we present “patchwork dynamics”, a nu-
merical approach for studying growth of correlations and
non-equilibrium effects over a wide range of length and
time scales in systems with quenched disorder. Patch-
work dynamics proceeds by a succession of coarse-grained
equilibrations – or optimizations at zero temperature –
and provides a framework for investigating the relation
between the evolution of microscopic correlations and the
complex nonequilibrium effects observed in experimen-
tal spin glasses. This approach therefore replaces depen-
dence on time by dependence on length scales. It can be
used to study coarsening and the persistence of the ini-
tial state, to replicate memory and rejuvenation effects,
to visualize how disordered systems store their history,
and also as a ground state algorithm for systems that are
otherwise difficult to optimize.

As an initial application, in this paper we investigate
the two-dimensional (2D) Edwards-Anderson Ising spin
glass model (ISG) and the 2D random bond ferromagnet
(RBFM), both at zero temperature. For both models, the

Hamiltonian, H, has the form H = −
∑

〈ij〉 Jijsisj , where
the Ising spin variables si = ±1 lie on a d-dimensional
lattice and the Jij are mean-zero Gaussian random vari-
ables for the ISG and are random, but positive, for the
frustration-free RBFM model. The nature of the low-
temperature state in the ISG, including even the number
of states, is still a subject of study [5, 6] and the response
to perturbations, such as modifications of T , the Jij , or
boundary conditions (BCs) is complex and only partially
understood. Note that the 2D ISG is “glassy” only as
T → 0, but we use it as a model for the low-temperature
phase of glassy magnets where temperature is irrelevant.
Patchwork dynamics is a general approach, with other
immediate applications including [7] non-equilibrium dy-
namics in three-dimensional spin glass models and 2D
dimer models at finite temperature.

Dynamics in disordered materials is extremely slow
since arbitrarily large groups of spins must rearrange to
explore the low-free-energy phase space described by H.
A homogeneous ferromagnet (uniform positive Jij) can
move from any initial state to its ground state via energy
lowering flips of small numbers of spins. By contrast, in
a spin glass, arbitrarily large collective spin flips must oc-
cur [8]. It has been argued that the case of the RBFM is
similar: disorder pins domain walls separating constant-
spin domains on arbitrarily large scales [9]. Furthermore,
the time to flip a collection of spins grows quickly with
the number of spins in the cluster. The associated time
scale is ∼ τ0e

B/T with microscopic time scale τ0 and B
the energy barrier to the flip. For scale ℓ clusters, the
typical barrier B(ℓ) will grow with length scale, since
more improbable events must occur simultaneously. The
distribution of barriers will have a broad range of val-
ues and thus the distribution of flip times will be even
more broadly distributed. Thus rough separation of time
scales is expected for geometrically separated ℓ. In par-
ticular, this occurs for the simplest hypothesized scaling
form B ∼ ℓψ, with ψ a model-dependent scaling expo-
nent, and the width of the distribution of B given by its
typical value. (Numerical evidence sometimes has sug-
gested a power law growth [10], or logarithmic barriers,
and the multiplicity of barriers also needs to be consid-
ered.) One numerical consequence is that the range of

http://arXiv.org/abs/0708.0683v2


2

length scales that single-spin-flip Glauber dynamics can
probe is severely limited by the quick growth of time
scales with length, even though it can give some useful
information about the evolution of correlations in spin
glasses and other disordered systems [4, 10, 11].

The dependence of barriers on length scale motivates
patchwork dynamics, which takes advantage of the sepa-
ration of time scales to mimic the development of corre-
lations. It operates over a succession of increasing spatial
scales, ℓm = 1, 2, . . . , 2m, . . . , starting from an initial spin
configuration on a given sample of fixed size L. For each
m, we “equilibrate” the sample by optimizing (or equili-
brating) randomly-chosen subsystems – patches – of size
ℓm, with fixed boundary conditions on a patch given by
the surroundings. After applying sufficient patches at
scale ℓm, the scale is increased to the next in the se-
quence, ℓm+1, and the procedure is repeated. (Results
are similar for arithmetical sequences of ℓm.) We im-
plement two versions of this dynamics. In the “com-
plete” version, we repeat the optimization at each scale
until no more improvements are possible. In the “mean
coverage” approach we apply c(L/ℓm)d patches, cover-
ing the system c times at that scale. In both versions,
patch placement is independent of the actual barriers,
so the dynamics cannot replicate the fine-grained evolu-
tion of correlations. Refinements might include using a
barrier-dependent success probability in placing patches
or determining (non-square) patches that have the lowest
estimated barrier [12]. Note that the general procedure
is numerically tractable only when equilibration or opti-
mization is fast enough at each length scale [13].

In spirit, patchwork dynamics resembles simulations
used to study the mosaic picture of structural glasses’
dynamics, where atoms are equilibrated inside of a fixed
shell, and analytic work on kinetically constrained mod-
els of glasses [14]. Multiscale approaches have also been
used to study spin glasses on hierarchical lattices [15] as
well as in optimization [16]. However, here we focus pri-
marily on using equilibrium or ground state solutions in
the study of non-equilibrium dynamics.

We apply patchwork dynamics to studying equilibra-
tion of the 2D ISG Gaussian model and 2D RBFM model
(with uniform distribution for Jij ∈ [0, 1]) on square lat-
tices with toroidal boundary conditions. While we de-
scribe and carry out simulations for the case of opti-
mization, equilibration on subsamples can replace ground
states throughout. Calculations were carried out for sys-
tems up to size 2562 with patch sizes up to ℓm = 128,
using on the order of 4×103 samples. The mean-coverage
approach with c = 150 is nearly indistinguishable from
the complete approach and qualitative behaviors, includ-
ing power law exponents for large ℓm, are independent
of c ≥ 8. Furthermore, the number of spins flipped at
each scale approaches a c-independent limit, consistent
with the assumption that changes over geometrically sep-
arated length scales occur on well-separated time scales.

ℓm = 1 ℓm = 8ℓm = 2 ℓm = 4

Figure 1: Domain growth under patchwork dynamics for a
L2 = 1282 sample. Light spins are aligned with one of the
ground states, while dark spins are aligned with the other.
The initial spins are random. At each scale ℓm, randomly
selected patches of dimension ℓm × ℓm are optimized, with
fixed spins exterior to the patch, until a stable configuration
is reached. The upper row shows a history for the Ising spin
glass, while the lower row is for the random bond ferromagnet,
for which the typical domain size b(ℓm) grows faster than ℓm.

To study the approach to the final state, at each scale
ℓm we compare our solutions with the doubly degenerate
optimal T = 0 solution. For the RBFM, this configura-
tion has uniform spin. For the ISG, we compare to the ex-
tended ground state [17], the optimal combination of spin
variables and choice of periodic/anti-periodic boundary
conditions minimizing the EA Hamiltonian, and we set
boundary conditions accordingly. We estimate a coars-
ening length scale b(ℓm), as evident in Fig. 1, by the
mean Manhattan distance from a randomly chosen point
to a domain wall. We also compute the residual energy
density δe(ℓm) = L−d[E(ℓm) − EGS], where the overline
indicates an average over disorder, E(ℓm) is the total
Hamiltonian at the completion of the computations for
stage m, and EGS is the ground state energy for the sam-
ple. Fig. 2 shows residual energy, δe, and domain size, b,
as a function of patch scale, ℓm. The spin glass results are
consistent with δe ∼ ℓθ−2

m , with θ = −0.27 [18], b ∼ ℓm.
The results for the 2D RBFM are consistent with the ex-
pectation [9] δe ∼ ℓ

−4/3
m and b ∼ ℓ

4/3
m . The accuracy of

the slopes is about ±0.1 in each case, with the expected
power laws indicated by straight lines in Fig. 2.

In a spin glass, the decay of magnetization M from a
fully magnetized initial condition is closely related to the
persistence of a random initial spin configuration. Given
a random initial condition, let p(ℓm) be the probability
a spin points in its t = 0 direction. For a spin glass, the
fully magnetized initial condition is random with respect
to the bonds, soM(ℓm) = 2p(ℓm)−1. Motivated by other
known cases [19], Fisher and Huse [5] conjecture that in
the 3D EA model, 2p(ℓm) − 1 ∼ ℓ−λm , where λ is an in-
dependent exponent describing the dynamics. A second
exponent describing memory decay is the persistence ex-
ponent θ′ [19, 20], where the probability a spin never has
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Figure 2: Plots of (a) the residual energy density δe(ℓm) above
the ground state energy density and (b) the domain scale
b(ℓm), as a function of the patch size ℓm, for the 2D Ising
spin glass and the random bond ferromagnet. Straight lines
indicate power law behaviors described in the text.
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Figure 3: Plot showing decay of the remanent magnetization
and the persistence of the initial spin configuration in the Ising
spin glass. The dependence of (a) magnetization M(ℓm) and
(b) unflipped spins P (ℓm) are described by power laws with
slopes of −λ = −1.4±0.1 and −θ′ = −0.5±0.05, respectively.

flipped is conjectured to decay as P (ℓm) ∼ ℓ−θ
′

m .

We use patchwork dynamics to investigate the values
of λ and θ′ in the ISG (Fig. 3). For ℓm > 16, a power
law decay describes the data well with λSG = 1.4 ± 0.1
and θ′SG = 0.5 ± 0.05. Estimates of systematic rather
than statistical error dominate total error. Details of the
sequence of patch size do not affect our estimate of λ,
as we have checked by applying patches at every scale,
λ = 1, 2, 3, . . . , L/2. Furthermore, the effective expo-
nents (slopes on log-log plots) are nearly independent of c
for L ≥ 16 and 8 < c < 150. Similarly for the RBFM, we
find λRB = 1.4±0.1. Note that under patchwork dynam-
ics, the boundaries of overlapping patches store memory
since the dynamics optimizes (or equilibrates) all spins
except those on the boundaries.

The dramatic rejuvenation and memory effects seen
in temperature cycling experiments on spin glasses must
arise from a special persistence [2]. Memory of magnetic
susceptibility at a given temperature indicates that the
pattern of magnetization must be encoded into the spin
configuration and realized in physical space via domain
growth at distinct temperatures. Similar memory effects
are observed when the strength of exchange interactions
are perturbed rather than the temperature [4, 11, 21]. It

is likely that this “disorder chaos” is related to “temper-
ature chaos” and memory in experimental spin glasses.
How disordered media like spin glasses can retain spin in-
formation so effectively is a central issue in understanding
their out of equilibrium behavior.

We use patchwork dynamics to investigate memory ef-
fects in the 2D ISG. Since there is no finite-temperature
spin glass phase, between “equilibrations” we perturb ex-
change interactions. We start with random initial condi-
tions and couplings Jij . First, we apply patches up to size

ℓ
(1)
max. Second, we perturb bond strengths by an amount

∆, via Jij → J ′
ij =

Jij+∆Kij√
1+∆2

, with Kij independent

Gaussian random variables, and then we apply patches

up to size ℓ
(2)
max. Finally, in the third stage, we revert to

the Jij and age using patches up to size ℓ
(3)
max. After steps

k = 1, 2, 3, system configuration is denoted by si(k). The
two ground states with couplings Jij and J ′

ij are corre-
lated on length scales smaller than the “chaos” length,
ξ ∼ ∆−1/ζ , with ζ = ds/2−θ ≈ 0.91 [22]. To quantify ag-
ing and memory effects, we use the sample-averaged spin
overlap q(k) = L−2

∑
i si(1)si(k), for stages k = 2, 3.

The full parameter space is four-dimensional, defined

by ℓ
(1,2,3)
max and ∆, so we focus on particular regions. We

set ℓ
(1)
max = ∞, so that after the first stage the system is

in the ground state for the original couplings Jij , giving

ℓ
(1)
max ≫ ℓ

(2,3)
max . We then investigate the two limits of large

and small changes in exchange interactions, i.e., large and
small ∆. For all memory simulations, we fix c = 50.

When ∆ is large, ξ = 1 and the ground state with J ′
ij is

nearly uncorrelated to that for bonds Jij . Thus the spin

overlap after the second stage scales as q(2) ∼ [ℓ
(2)
max]−λ.

During the third stage, we find that the overlap increases

with increasing ℓ
(3)
max, as the ground state is recovered

with the original Jij . We find that q(3)/q(2) ∼ [ℓ
(3)
max]κ,

with κ = 0.5±0.05, for q(3) < 0.5 and 8 ≤ ℓ
(3)
max ≤ 64 (for

q(3) > 0.5, the increase of q(3) is independent of q(2)).
Fig. 4(a) shows results for ∆ = 8. In fact, there is no
obvious difference in the behavior of q(3) between when

ℓ
(3)
max < ℓ

(2)
max and when ℓ

(3)
max > ℓ

(2)
max.

We study the crossover from weak to strong chaos by
using smaller values of ∆. The overlap length relating
ground states for Jij and J ′

ij is ξ ≈ (2.00 ± 0.15)∆1/ζ.

For ℓ
(2)
max < ξ, q(2) is near unity. For ℓ

(2)
max > ξ, memory

recovery in the third stage only occurs when ℓ
(3)
max > ξ.

As shown in Fig. 4(b), the ratio q(3)/q(2) plotted against

ℓ
(3)
max/ξ exhibits a convincing numerical collapse to a sin-

gle function, for q(3) < 0.5. The asymptotic memory

growth is consistent with q(3)/q(2) ∼ [ℓ
(3)
max/ξ]κ.

Patchwork dynamics at T = 0 also provides a sim-
ple and fast technique to solve optimization problems
quickly [16] in large systems or in systems on a toroidal
lattice, which are otherwise difficult to study, especially
for continuous disorder and arbitrary boundary condi-
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Figure 4: Plots of the strength of memory in the 2D Ising
spin glass at zero temperature, for strong and weak chaos.
The first aging stage is long enough to reach the ground state
for a given bond realization Jij (with L = 128). The system

is coarsened under patchwork dynamics up to lengths ℓ
(2,3)
max

in stages 2 and 3, using bonds J ′

ij and Jij , respectively. (a)
For large ∆, ξ ≈ 1.0 and the final spin overlap q(3) grows as

q(3)/q(2) ∼ [ℓ
(3)
max]

κ, with κ = 0.5 ± 0.05, for q(3) restricted

to q(3) < 0.5. (b) For smaller ∆, using ξ = 2.0(∆)−1/ζ , and

ℓ2max > ξ, q(3) is constant until ℓ
(3)
max exceeds ξ, and q(3)/q(2)

collapses to a single function of ℓ
(3)
max/ξ (again restricting data

to q(3) < 0.5). Solid lines indicate κ = 0.5.

tions [10, 17]. For example, on the 2D ISG on a toroidal
lattice, using fixed BC patches of size L−1 with coverage
c = 16 and choosing the best evolved state from 20 ran-
dom histories (a history is defined by an initial condition
and patch placement sequence), we found the exact ex-
tended ground state in all of 104 samples of size L = 256.
We also found the exact ground state in 103 samples of
size L = 32 and L = 64 with arbitrary boundary condi-
tions, with the same protocol. The mean time to find the
ground state is approximately 1.5 histories. Even using
smaller patches of size L/2 and c = 50 in systems of size
L = 128, we found the exact extended ground state on
a torus using 120 histories with no failures in 104 sam-
ples; half-size patches can therefore be used to find the
ground state. Such techniques are currently being stud-
ied to compute precise exponent values for the 2D ISG
and to increase the size of 3D systems that can be studied
with high confidence [7].

In conclusion, coarse-grained evolution on a sequence
of length scales mimics the long time scales associated
with non-equilibrium evolution in disordered systems,
greatly reducing computational time and also providing
a theoretical framework for studying non-equilibrium ef-
fects in such systems. We demonstrate the use of this ap-
proach in determining coarsening and persistence expo-
nents, finding exact ground states, and replicating aging
and memory effects. One important further application
is to extend these investigations to 3D Ising spin glasses
[7]. Additionally, the use of this dynamics could be cou-
pled with hierarchical approaches for estimating barriers
in glassy models [12].

This work was supported in part by NSF grant DMR

0606424. We thank Daniel Fisher for stimulating discus-
sions, Frauke Liers for confirming our results on exact
ground states on toroidal systems, and the Aspen Center
for Physics for its hospitality.
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