36 research outputs found

    Exploring changes in the spatial distribution of stream baseflow generation during a seasonal recession

    Get PDF
    [1] Relating watershed structure to streamflow generation is a primary focus of hydrology. However, comparisons of longitudinal variability in stream discharge with adjacent valley structure have been rare, resulting in poor understanding of the distribution of the hydrologic mechanisms that cause variability in streamflow generation along valleys. This study explores detailed surveys of stream base flow across a gauged, 23 km 2 mountain watershed. Research objectives were (1) to relate spatial variability in base flow to fundamental elements of watershed structure, primarily topographic contributing area, and (2) to assess temporal changes in the spatial patterns of those relationships during a seasonal base flow recession. We analyzed spatiotemporal variability in base flow using (1) summer hydrographs at the study watershed outlet and 5 subwatershed outlets and (2) longitudinal series of discharge measurements every $100 m along the streams of the 3 largest subwatersheds (1200 to 2600 m in valley length), repeated 2 to 3 times during base flow recession. Reaches within valley segments of 300 to 1200 m in length tended to demonstrate similar streamflow generation characteristics. Locations of transitions between these segments were consistent throughout the recession, and tended to be collocated with abrupt longitudinal transitions in valley slope or hillslope-riparian characteristics. Both within and among subwatersheds, correlation between the spatial distributions of streamflow and topographic contributing area decreased during the recession, suggesting a general decrease in the influence of topography on stream base flow contributions. As topographic controls on base flow evidently decreased, multiple aspects of subsurface structure were likely to have gained influence

    Synoptic sampling and principal components analysis to identify sources of water and metals to an acid mine drainage stream

    Get PDF
    Combining the synoptic mass balance approach with principal components analysis (PCA) can be an effective method for discretising the chemistry of inflows and source areas in watersheds where contamination is diffuse in nature and/or complicated by groundwater interactions. This paper presents a field-scale study in which synoptic sampling and PCA are employed in a mineralized watershed (Lion Creek, Colorado, USA) under low flow conditions to (i) quantify the impacts of mining activity on stream water quality; (ii) quantify the spatial pattern of constituent loading; and (iii) identify inflow sources most responsible for observed changes in stream chemistry and constituent loading. Several of the constituents investigated (Al, Cd, Cu, Fe, Mn, Zn) fail to meet chronic aquatic life standards along most of the study reach. The spatial pattern of constituent loading suggests four primary sources of contamination under low flow conditions. Three of these sources are associated with acidic (pH <3.1) seeps that enter along the left bank of Lion Creek. Investigation of inflow water (tracemetal and major ion) chemistry using PCA suggests a hydraulic connection between many of the left bank inflows and mine water in the Minnesota Mine shaft located to the north-east of the river channel. In addition, water chemistry data during a rainfall-runoff event suggests the spatial pattern of constituent loading may be modified during rainfall due to dissolution of efflorescent salts or erosion of streamside tailings. These data point to the complexity of contaminant mobilisation processes and constituent loading in mining-affected watersheds but the combined synoptic sampling and PCA approach enables a conceptual model of contaminant dynamics to be developed to inform remediation

    Identification of groundwater exfiltration, interflow discharge, and hyporheic exchange flows by fibre optic distributed temperature sensing supported by electromagnetic induction geophysics

    No full text
    Water exchange across the sediment‐water interface of streams impresses a characteristic thermal pattern at the interface. The use of Fiber Optic Distributed Temperature Sensing (FO‐DTS) at the sediment‐water interface in a small sand‐bed stream identifies such temperature patterns. Groundwater and interflow can be differentiated based on the temporal evolution of temperature patterns. Additionally, sudden temperature changes at the sediment‐water interface observed during the transit of floods enable spatial identification of local up‐ and downwelling. Electromagnetic induction geophysics (EMI) can detect subsurface texture structures that support groundwater‐surface water exchange. Our results show that areas of permanent temperature anomalies observed with FO‐DTS match areas of comparatively homogeneous electrical conductivity. This indicates groundwater discharge and enables differentiating groundwater discharge from interflow and local downwelling

    Metals fate and transport modelling in streams and watersheds: state of the science and USEPA workshop review

    Get PDF
    Metals pollution in surface waters from point and non-point sources (NPS) is a widespread problem in the United States and worldwide (Lofts et al., 2007; USEPA, 2007). In the western United States, metals associated with acid mine drainage (AMD) from hardrock mines in mountainous areas impact aquatic ecosystems and human health (USEPA, 1997a; Caruso and Ward, 1998; Church et al., 2007). Metals fate and transport modelling in streams and watersheds is sometimes needed for assessment and restoration of surface waters, including mining-impacted streams (Runkel and Kimball, 2002; Caruso, 2003; Velleux et al., 2006). The Water Quality Analysis Simulation Program (WASP; Wool et al., 2001), developed by the US Environmental Protection Agency (USEPA), is an example of a model used for such analyses. Other approaches exist and appropriate model selection depends on site characteristics, data availability and modelling objectives. However, there are a wide range of assumptions, input parameters, data requirements and gaps, and calibration and validation issues that must be addressed by model developers, users and decision makers. Despite substantial work on model development, their successful application has been more limited because they are not often used by decision makers for stream and watershed assessment and restoration. Bringing together scientists, model developers, users and decision makers should stimulate the development of appropriate models and improve the applicability of their results. To address these issues, the USEPA Office of Research and Development and Region 8 (Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming) hosted a workshop in Denver, Colorado on February 13–14, 2007. The workshop brought together approximately 35 experts from government, academia and consulting to address the state of the art for modelling metals fate and transport, knowledge gaps and future directions in metals modelling. It focused on modelling metals in high-altitude streams, rivers and watersheds impacted by mine waste that are common in the western United States and require remediation. For example, there are over 100 000 abandoned or inactive mining sites across the United States, encompassing over 500 000 acres of land that may eventually require characterization and remediation, including the possible application of stream or watershed metals fate and transport modelling (USEPA, 1997a). This article provides a general overview of the state of the science on modelling metals fate and transport in streams and watersheds, including a review of presentations and discussions at the USEPA workshop. It builds on previous summaries of metals fate and transport models in aquatic systems, including USEPA (1997b, 2007), Allen (2002), Paquin et al. (2003), Nordstrom (2004) and Maest et al. (2005)
    corecore