78 research outputs found

    Comparative Functional Genomics of Salt Stress in Related Model and Cultivated Plants Identifies and Overcomes Limitations to Translational Genomics

    Get PDF
    One of the objectives of plant translational genomics is to use knowledge and genes discovered in model species to improve crops. However, the value of translational genomics to plant breeding, especially for complex traits like abiotic stress tolerance, remains uncertain. Using comparative genomics (ionomics, transcriptomics and metabolomics) we analyzed the responses to salinity of three model and three cultivated species of the legume genus Lotus. At physiological and ionomic levels, models responded to salinity in a similar way to crop species, and changes in the concentration of shoot Cl− correlated well with tolerance. Metabolic changes were partially conserved, but divergence was observed amongst the genotypes. Transcriptome analysis showed that about 60% of expressed genes were responsive to salt treatment in one or more species, but less than 1% was responsive in all. Therefore, genotype-specific transcriptional and metabolic changes overshadowed conserved responses to salinity and represent an impediment to simple translational genomics. However, ‘triangulation’ from multiple genotypes enabled the identification of conserved and tolerant-specific responses that may provide durable tolerance across species

    Lotus japonicus Metabolic Profiling. Development of Gas Chromatography-Mass Spectrometry Resources for the Study of Plant-Microbe Interactions

    No full text
    Symbiotic nitrogen fixation (SNF) in legume root nodules requires differentiation and integration of both plant and bacterial metabolism. Classical approaches of biochemistry, molecular biology, and genetics have revealed many aspects of primary metabolism in legume nodules that underpin SNF. Functional genomics approaches, especially transcriptomics and proteomics, are beginning to provide a more holistic picture of the metabolic potential of nodules in model legumes like Medicago truncatula and Lotus japonicus. To extend these approaches, we have established protocols for nonbiased measurement and analysis of hundreds of metabolites from L. japonicus, using gas chromatography coupled with mass spectrometry. Following creation of mass spectral tag libraries, which represent both known and unknown metabolites, we measured and compared relative metabolite levels in nodules, roots, leaves, and flowers of symbiotic plants. Principal component analysis of the data revealed distinct metabolic phenotypes for the different organs and led to the identification of marker metabolites for each. Metabolites that were enriched in nodules included: octadecanoic acid, asparagine, glutamate, homoserine, cysteine, putrescine, mannitol, threonic acid, gluconic acid, glyceric acid-3-P, and glycerol-3-P. Hierarchical cluster analysis enabled discrimination of 10 groups of metabolites, based on distribution patterns in diverse Lotus organs. The resources and tools described here, together with ongoing efforts in the areas of genome sequencing, and transcriptome and proteome analysis of L. japonicus and Mesorhizobium loti, should lead to a better understanding of nodule metabolism that underpins SNF

    Lotus japonicus LjKUP is induced late during nodule development and encodes a potassium transporter of the plasma membrane

    No full text
    The KUP family of potassium transporters in plants is large but poorly characterized. We isolated and characterized the first KUP transporter from a legume, LjKUP of Lotus japonicus. Although expressed throughout plants, LjKUP transcript levels were highest in nodules. Induction of LjKUP expression occurred late during nodule development, at a time of rapid organ expansion. A high level of LjKUP expression was maintained in mature, full-sized nodules. However, induction of LjKUP expression was independent of symbiotic nitrogen fixation (SNF), and occurred in ineffective nodules resulting from mutations in either the plant or its microsymbiont, Mesorhizobium loti. Heterologous expression of LjKUP in Escherichia coli showed that the protein is able to transport potassium. Transient expression of a GFP-LjKUP fusion protein in Arabidopsis cells indicated a plasma membrane location for the transporter. Taken together, the results indicate that LjKUP is a potassium transporter of the plasma membrane, which may play roles in cell expansion during nodule development and in ion homeostasis during SNF

    Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation

    Get PDF
    The Arabidopsis thaliana metal tolerance protein 1 (MTP1) of the cation diffusion facilitator family of membrane transport proteins can mediate the detoxification of Zn in Arabidopsis and yeast. Xenopus laevis oocytes expressing AtMTP1 accumulate more Zn than oocytes expressing the AtMTP1D94A mutant or water-injected oocytes. An AtMTP1-GFP fusion protein localizes to the vacuolar membrane in root and leaf cells. The analysis of Arabidopsis transformed with a promoter-GUS construct suggests that AtMTP1 is not produced throughout the plant, but primarily in the subpopulation of dividing, differentiating and expanding cells. RNA interference-mediated silencing of AtMTP1 causes Zn hypersensitivity and a reduction in Zn concentrations in vegetative plant tissues
    • …
    corecore