81 research outputs found

    Analysis of Effects of Magnetic Slot Wedges on Characteristics of Large Induction Motors

    No full text
    Magnetic slot wedges are often used to improve starting performance of large induction motors. In this paper we have investigated – through simulation – the effects of the wedges on the performance characteristics of the motor and core losses under no load condition. Both analytical and hybrid two-dimensional field-circuit models have been used. In order to reliably establish the parameters of the end connections of the rotor cage, whose values significantly influence the results of simulation, a three-dimensional model was developed, also useful for verification purposes at standstill. The simulation has demonstrated the effects of the wedges on the starting performance but revealed little influence on the core losses

    Optimization of broadband semiconductor chirped mirrors with genetic algorithm

    Get PDF
    Genetic algorithm was applied for optimization of dispersion properties in semiconductor Bragg reflectors for applications in femtosecond lasers. Broadband, large negative group-delay dispersion was achieved in the optimized design: The group-delay dispersion (GDD) as large as −3500 fs2 was theoretically obtained over a 10-nm bandwidth. The designed structure was manufactured and tested, providing GDD −3320 fs2 over a 7-nm bandwidth. The mirror performance was verified in semiconductor structures grown with molecular beam epitaxy. The mirror was tested in a passively mode-locked Yb:KYW laser

    Prescribed Fire Alters Structure and Composition of a Mid-Atlantic Oak Forest up to Eight Years After Burning

    Get PDF
    Background Prescribed fire in Eastern deciduous forests has been understudied relative to other regions in the United States. In Pennsylvania, USA, prescribed fire use has increased more than five-fold since 2009, yet forest response has not been extensively studied. Due to variations in forest composition and the feedback between vegetation and fire, Pennsylvania deciduous forests may burn and respond differently than forests across the eastern US. We measured changes in forest structure and composition up to eight years after prescribed fire in a hardwood forest of the Ridge and Valley region of the Appalachian Mountains in central Pennsylvania. Results Within five years post fire, tree seedling density increased more than 72% while sapling density decreased by 90%, midstory density decreased by 46%, and overstory response varied. Following one burn in the mixed-oak unit, overstory tree density decreased by 12%. In the aspen–oak unit, where pre-fire harvesting and two burns occurred, overstory tree density increased by 25%. Not all tree species responded similarly and post-fire shifts in species relative abundance occurred in sapling and seedling size classes. Abundance of red maple and cherry species decreased, whereas abundance of sassafras, quaking aspen, black oak, and hickory species increased. Conclusions Forest composition plays a key role in the vegetation–fire relationship and localized studies are necessary to measure forest response to prescribed fire. Compositional shifts in tree species were most pronounced in the aspen–oak unit where pre-fire overstory thinning and two prescribed fires were applied and significant structural changes occurred in all stands after just one burn. Increases in fire-tolerant tree species combined with reductions in fire-intolerant species highlight the role of prescribed fire in meeting management objectives such as altering forest structure and composition to improve game habitat in mid-Atlantic hardwood forests

    Multi-dimensional modeling and simulation of semiconductor nanophotonic devices

    Get PDF
    Self-consistent modeling and multi-dimensional simulation of semiconductor nanophotonic devices is an important tool in the development of future integrated light sources and quantum devices. Simulations can guide important technological decisions by revealing performance bottlenecks in new device concepts, contribute to their understanding and help to theoretically explore their optimization potential. The efficient implementation of multi-dimensional numerical simulations for computer-aided design tasks requires sophisticated numerical methods and modeling techniques. We review recent advances in device-scale modeling of quantum dot based single-photon sources and laser diodes by self-consistently coupling the optical Maxwell equations with semiclassical carrier transport models using semi-classical and fully quantum mechanical descriptions of the optically active region, respectively. For the simulation of realistic devices with complex, multi-dimensional geometries, we have developed a novel hp-adaptive finite element approach for the optical Maxwell equations, using mixed meshes adapted to the multi-scale properties of the photonic structures. For electrically driven devices, we introduced novel discretization and parameter-embedding techniques to solve the drift-diffusion system for strongly degenerate semiconductors at cryogenic temperature. Our methodical advances are demonstrated on various applications, including vertical-cavity surface-emitting lasers, grating couplers and single-photon sources

    Variational approach to optimal design and sensitivity analysis of elastic structures

    No full text

    Sensivity and design of fiber layout in composites

    No full text
    For a linear structure reiforced with elastic fibers, the first variation of an arbitrary behavioral functional corresponding to variation of shape or orientation of fibers is derived by using the direct approach to sensivity analysis. The relevant optimality conditions for optimal design and identification problems are then derived. Both the static and dynamic loading cases are considered. Some simple examples illustrate the applicability of the presented approach.Wrażliwość i projektowanie ułożenia włókien w kompozycie. W pracy rozpatrzono pierwszą wariację dowolnego funkcjonału związaną z wariacją kształtu lub orientacji wzmacniających włókien w płaskiej liniowo-sprężystej tarczy. Wrażliwości rozpatrywanego funkcjonału wyznaczono wykorzystując metodę bezpośrednią analizy wrażliwości. Następnie sformułowano typowy problem optymalnego projektowania oraz problem identyfikacyjny i wyznaczono odpowiednie warunki optymalności. Rozpatrzono zarówno przypadek obciążeń statycznych, jak i dynamicznych

    Analysis and design of thermo-mechanical interfaces

    No full text
    An elastic structure subjected to thermal and mechanical loading with prescribed external boundary and varying internal interface is considered. The different thermal and mechanical nature of this interface is discussed, since the interface form and its properties affect strongly the structural response. The first-order sensitivities of an arbitrary thermal and mechanical behavioral functional with respect to shape and material properties of the interface are derived using the direct or adjoint approaches. Next the relevant optimality conditions are formulated. Some examples illustrate the applicability of proposed approach to control the structural response due to applied thermal and mechanical loads
    • …
    corecore