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FIELD NOTE Open Access

Prescribed fire alters structure and
composition of a mid-Atlantic oak forest up
to eight years after burning
Cody L. Dems1* , Alan H. Taylor2, Erica A. H. Smithwick2, Jesse K. Kreye1 and Margot W. Kaye1

Abstract

Background: Prescribed fire in Eastern deciduous forests has been understudied relative to other regions in
the United States. In Pennsylvania, USA, prescribed fire use has increased more than five-fold since 2009, yet
forest response has not been extensively studied. Due to variations in forest composition and the feedback
between vegetation and fire, Pennsylvania deciduous forests may burn and respond differently than forests
across the eastern US. We measured changes in forest structure and composition up to eight years after
prescribed fire in a hardwood forest of the Ridge and Valley region of the Appalachian Mountains in central
Pennsylvania.

Results: Within five years post fire, tree seedling density increased more than 72% while sapling density
decreased by 90%, midstory density decreased by 46%, and overstory response varied. Following one burn in
the mixed-oak unit, overstory tree density decreased by 12%. In the aspen–oak unit, where pre-fire harvesting
and two burns occurred, overstory tree density increased by 25%. Not all tree species responded similarly and
post-fire shifts in species relative abundance occurred in sapling and seedling size classes. Abundance of red
maple and cherry species decreased, whereas abundance of sassafras, quaking aspen, black oak, and hickory
species increased.

Conclusions: Forest composition plays a key role in the vegetation–fire relationship and localized studies are
necessary to measure forest response to prescribed fire. Compositional shifts in tree species were most
pronounced in the aspen–oak unit where pre-fire overstory thinning and two prescribed fires were applied
and significant structural changes occurred in all stands after just one burn. Increases in fire-tolerant tree
species combined with reductions in fire-intolerant species highlight the role of prescribed fire in meeting
management objectives such as altering forest structure and composition to improve game habitat in mid-
Atlantic hardwood forests.

Keywords: Acer, fire management, hardwood forest, post-fire tree mortality, Quercus, Ridge and Valley
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Resumen

Antecedentes: Las quemas prescriptas en los bosques deciduos del Este, han sido poco estudiadas en relación a
otras regiones en los Estados Unidos. En Pensilvania, EEUU, las quemas prescriptas se han incrementado más de
cinco veces desde 2009, aunque sus respuestas en los bosques no han sido extensivamente estudiadas. Debido a
variaciones en la composición del bosque y a la retroalimentación entre fuego y vegetación, los bosques deciduos
de Pensilvania pueden quemarse y responder demanera diferente que otros bosques a través del Este de los EEUU.
Medimos cambios en la composición y estructura del bosque hasta ocho años después de una quema prescripta
en un bosque de la región del valle de las montañas Ridge en los Apalaches del centro de Pensilvania.

Resultados: Dentro de los cinco años post incendio, la densidad de plántulas se incrementó más del 72%, la
densidad de brinzales (árboles jóvenes) decreció en un 90%, la densidad del sotobosque de media altura decreció
en un 46% y la respuesta del dosel superior fue variable. Después de una quema en la unidad de roble-álamo, la
densidad del dosel superior decreció en un 12%. En la unidad de roble-álamo, donde se realizó una corta pre
fuego y luego dos quemas, la densidad del doselsuperior se incrementó en un 25%. No todas las especies
respondieron de manera similar y desviaciones en la abundancia relativa de especies ocurrieron en tamaños y
clases de edad de plántulas y brinzales. La abundancia del arce rojo y de especies de cerezo decrecieron, mientras
que aumentó la abundancia de especies como el sasafrás, álamo temblón, roble negro y nogal americano.

Conclusiones: La composición del boque juega un rol clave en la relación fuego-vegetación, y estudios localizados
son necesarios para medir la respuesta del bosque a lasquemas prescriptas. Las desviaciones en la composición de
especies fueron más pronunciadas en la unidad de roble-álamo, donde un raleo pre fuego del dosel superior y dos
quemas prescriptas fueron aplicadas, ocurriendo cambios estructurales significativos en todos los rodales con solo
una quema. El incremento de especies de árboles tolerantes al fuego combinado con la reducción de especies
intolerantes alfuego, destaca el rol de las quemas prescriptas en la consecución de objetivos de manejo, como la
alteración de la estructura del bosque y su composición para mejorar el hábitat para la fauna en los bosques
Atlánticos de madera dura de los EEUU.

Background
Prescribed fires are planned disturbances used to influence
forest structure and composition with varying effects across
regions (Ryan et al. 2013). Prescribed fire is relatively under-
studied in the eastern deciduous forests of the United States
(Stambaugh et al. 2015; Varner et al. 2016), yet fire is increas-
ingly used for management purposes. For example, the State
of Pennsylvania passed the Prescribed Burning Practices Act
in 2009, reducing the legal barriers placed on the use of pre-
scribed fire within the state (Pennsylvania General Assembly
2009). This policy change supports the desires of multiple
land agencies to use prescribed fire to promote specific forest
compositions for ecological and economic benefit (Brose
et al. 2008; Pennsylvania General Assembly 2009). In the
seven years following the legislation, the annual number of
prescribed fires in Pennsylvania increased from 56 to 222,
and area burned increased from 1107 to 7532 ha (PA DCNR
2015; National Interagency Fire Center 2017), many hectares
burning only once due to the barriers forest managers face
when planning and implementing prescribed fires
(Smithwick et al. 2020). This influx of prescribed fire
is introducing disturbance to areas that have been fire
free for about 80 years (Klimkos 2017), and localized
forest response has not been extensively studied.
Over the past century, Eastern oak (Quercus spp.) for-

ests experienced a shift in species abundance with

increases in fire-intolerant species such as red maple (Acer
rubrum L.) and limited regeneration of fire-tolerant oak
(Abrams 2003; Nowacki and Abrams 2008). Reduced oak
dominance is a management concern due to declines in
wildlife habitat quality (Brose et al. 2008; Dey 2014), tim-
ber market stability (Brose et al. 2008), nutrient cycling
(Alexander and Arthur 2010; Alexander and Arthur
2014), and understory plant diversity (Hutchinson et al.
2005). While multiple interacting factors are driving this
forest change (McEwan et al. 2011), research indicates
that humans played a significant role in altering the type
and extent of forest disturbance (Drummond and Love-
land 2010) to include landscape-scale forest clearing and
homogenization of forest age (Dey 2014) as well as de-
creasing fire frequency (Stambaugh et al. 2018; Abrams
and Nowacki 2019). Both indigenous peoples and Euro-
pean settlers set fires, but early twentieth century policy
required all fires to be suppressed, which abruptly curbed
human ignitions (Donovan and Brown 2007; Marschall
et al. 2016; Lafon et al. 2017). Prescribed fire is considered
a tool to reinstate disturbance in Eastern forests (Brose
2014), an idea that stems from a historical relationship be-
tween frequent fire and oak dominance (Nowacki and
Abrams 2008).
One way prescribed fire alters forests is by killing trees

and promoting new germination and growth. Most post-
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fire tree death occurs in smaller-diameter trees due to
the combination of mild burn conditions (Schwilk et al.
2009) and increased fire resistance as trees get larger
(Brando et al. 2012). Following prescribed fire, top-killed
or injured trees of certain species use below-ground en-
ergy stores to re-sprout (Huddle and Pallardy 1999;
Blankenship and Arthur 2006), and fire promotes
seedling germination by consuming surface fuels, which
reduces litter and duff depth (Graham and McCarthy
2006; Arthur et al. 2012; Arthur et al. 2017). Additionally,
fire promotes seedling growth with temporary in-
creases in light availability due to canopy thinning
(Alexander et al. 2008). However, the extent of tree
death and regrowth is dependent on time of year
(Huddle and Pallardy 1999; Knapp et al. 2009), num-
ber and frequency of fires (Keyser et al. 2017), direct and
indirect fire effects (Hood et al. 2018), pre-fire manage-
ment (Albrecht and McCarthy 2006; Schwilk et al. 2009),
landscape position (Iverson et al. 2008; Arthur et al. 2015),
and tree species (Fan et al. 2011; Keyser et al. 2018).
Species in Eastern forests have traits that influence their
response to fire (Fan et al. 2011; Keeley et al. 2011; Pausas
2015). For example, many oak species have thicker bark,
more flammable leaf litter, and greater below-ground en-
ergy stores than red maple, effectively increasing their
survival and promoting fire where they are dominant
(Abrams 2003; Kreye et al. 2013). Variation in species
composition contributes to a feedback by which vegeta-
tion influences flammability and fire effects, and fire ef-
fects influence future vegetation (Nowacki and Abrams
2008; Mitchell et al. 2009; Tiribelli et al. 2018).
In this study, we ask how prescribed fire affects mid-

Atlantic deciduous forests over time. To answer this, we
measured changes in forest structure (abundance in tree
size classes) and composition in the Ridge and Valley
Region of the Appalachian Mountains in central
Pennsylvania up to eight years after prescribed fire. We
hypothesized that (H1) following one or two dormant-
season prescribed fires, there would be a pulse of seed-
ling and sprout recruitment, but a reduction of living
sapling and canopy trees; and that (H2) the relative
abundance of fire-tolerant tree species would increase
following prescribed fire due to higher survival and re-
generation relative to fire-intolerant trees. Our results
expand existing knowledge of Eastern deciduous forest
response to prescribed fire for multiple tree species in
mixed-deciduous forests of the mid-Atlantic.

Methods
Study site
Fire effects were studied on Pennsylvania State Game Lands
176 (SGL176) in the Ridge and Valley Physiographic Prov-
ince of central Pennsylvania (40.7° N, 77.9° W). SGL176 has
a humid continental climate with 80 to 100 cm of annual

precipitation and averages 9.4 °C throughout the year (cal-
culated from State College data, ~7 km away; The Pennsyl-
vania State Climatologist 2019). SGL176 is about 400 m
above sea level and located in a valley floor “frost pocket,”
where cold air pools as it sinks from surrounding ridges
(O’Neil 2006). Soils are well drained, acidic sandy loams
(USDA Web Soil Survey 2019) and land use has varied over
the past 200 years, including eras of iron ore mining and
charcoal production (O’Neil 2006; Abrams and Johnson
2014), as well as extensive logging and human-caused fires
from these activities.
To measure prescribed fire effects in SGL176, we sam-

pled vegetation before and after burning (between 2009
and 2018). All fires were ignited by hand in spring be-
fore leaf out, conducted by the Pennsylvania Game
Commission (PGC) under pre-established prescription
parameters (Additional file 1), and intended to improve
wildlife habitat. Forests in this area had not burned since
1939 (Klimkos 2017). Prescribed fire was applied in two
units, identified here as mixed-oak and aspen–oak based
on pre-fire overstory dominance (Fig. 1). The mixed-oak
unit totaled 108 ha and was burned in three sections
during 2010 to promote mixed oak–hickory (Carya Nutt.
spp.) stands by reducing maple (Acer L. spp.), birch
(Betula spp.), and aspen (Populus L. spp.) regeneration.
The aspen–oak unit was 28 ha and burned in both 2014
and 2017 to restore scrub oak (Quercus ilicifolia Wan-
genh.)–pitch pine (Pinus rigida P. Mill) communities. Be-
fore prescribed fire use, the aspen–oak unit was actively
managed for ruffed grouse (Bonasa umbellus Linnaeus,
1766) habitat using checkerboard mowing and overstory
tree removal (alternating one-hectare squares; Palmer
2000). To identify forest changes related to prescribed fire
versus those already occurring in the forest, we compared
data from the two burn units to data from unburned forests
in SGL176 using monitoring data from the PGC’s Continu-
ous Forest Inventory (CFI). CFI plots occur throughout
PGC lands, were located in ≥20-year-old forests, and pro-
vided comparable metrics. SGL176 had three CFI plots for
comparison.
Pre-fire tree species composition for the burn units

and unburned plots are provided in Table 1, and initial
tree density and basal area measures are presented in
Fig. 2. Ground cover in the study area consisted of
scattered fern (including Pteridium aquilinum [L.] Kuhn,
Dryopteris carthusiana [Vill.] H.P. Fuchs, and
Dennstaedtia punctilobula [Michx.] T. Moore) and low-
bush blueberry (Vaccinium L. spp.) patches. Clusters of
invasive privet (Ligustrum obtusifolium Siebold & Zucc.),
bush honeysuckles (including Lonicera maackii [Rupr.]
Herder, Lonicera tatarica L., and Lonicera × bella
Zabel), and Japanese barberry (Berberis thunbergii DC)
were scattered throughout the forest, and extensive deer
browse created understory conditions such that
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hardwood leaf litter was the primary ground cover. In
addition, the aspen–oak unit had a large shrub compo-
nent of scrub oak and dwarf chestnut oak (Quercus pri-
noides Willd.).

Field measurements
Within the burned units, field measurements began the
summer prior to the initial burn and the same protocols
were repeated at various intervals for five to eight years
after fire (mixed-oak unit measured in 2009, 2010, 2015,
and 2018; aspen–oak unit measured in 2013, 2015, and
2018). All measurements were completed between 1
May and 31 August to capture growing season vegeta-
tion. Nested fixed area plots (12.6 m radius for overstory
and midstory; 4 m for saplings; four 1.3 m for seedlings)
were established within each burn unit using a system-
atic sampling design (mixed-oak, n = 44; aspen–oak, n =
10 [five of which were mowed or thinned pre fire]). Plots
were located at least 60 m from unit boundaries and the
number of plots in each burn unit was determined by
unit size.
To measure forest structure and composition change

over time, all living trees >5 cm tall were identified to
species (to genus by some observers) and their diameter
at breast height (DBH) recorded with 0.1 cm accuracy.
When seedling trees (seedlings, sprouts, and suckers
≤2.54 cm DBH) were growing from the same base, only
the three largest were recorded. Unburned forest plots

were measured twice, in 2009 and 2014, using the PGC’s
CFI protocols (Bureau of Wildlife Habitat Management
2013) and slightly larger vegetation plots (16.1 m radius
for overstory and midstory; 8 m for saplings; 1.3 m for
seedlings) than those in the burn units.

Data analysis
Forest structure
To quantify changes in forest structure, we used linear
mixed-effects models (Bates et al. 2015; R Core Team
2018) to compare living tree stem density and basal area
across years. We treated year as a categorical fixed effect,
independent variable and modeled mean values at the
plot level. To account for the variation across plots, we
included plot as a random effect and, when present,
nested subplots within each plot (seedling measure-
ments). A few plots could not be relocated during at
least one year of data collection so our analysis only in-
cludes plots measured at all time points (mixed-oak, n =
40; aspen–oak, n = 7; unburned, n = 3). A small portion
of the mixed-oak unit (<10%) was affected by an aspen
harvest prior to burning; however, there were too few
plots (n = 2) included in the harvested area to analyze
them separately. Yearly differences of each response
variable were analyzed with Tukey pairwise comparisons
using least-squares means (Lenth 2016). All statistical
tests were considered significant at α = 0.05.

Fig. 1 Map of study area within State Game Lands 176, in central Pennsylvania, USA, where we measured changes in forest structure and
composition after prescribed fire, between 2009 and 2018
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Table 1 Pre-fire tree species composition by tree size class within State Game Lands 176, Pennsylvania, USA, where we measured
post-fire changes in forest structure and composition between 2009 and 2018

Pre-fire composition (% of total trees)

Seedlings Saplings Midstory Overstory

>5.08 cm tall, <2.54 cm
DBH

2.54-10.15 cm
DBH

10.16-19.99 cm
DBH

>19.99 cm
DBH

Unburned (measured 2009)

Bigtooth aspen Populus grandidentata Michx. - - 22.2 27.4

Birch Betula spp. - - 1.9 -

Black oak Quercus velutina Lam. 5.6 - - 8.3

Cherry Prunus L. spp. - - 3.7 -

Dogwood Cornus L. spp. - 4.2 - -

Hickory Carya spp. 3.7 - 3.9 2.8

Northern red oak Quercus rubra L. 5.7 - - 13.2

Red maple Acer rubrum L. 73.7 70.8 50.9 11.5

Sassafras Sassafras albidum (Nutt.) Nees - - 4.2 2.8

Serviceberry Amelanchier Medik. spp. 0.4 12.5 - -

White oak Quercus alba L. 11.0 8.3 13.2 34.0

Mixed-oak (measured 2009)

American
chestnut

Castanea dentata (Marsh.)
Borkh.

0.1 - - -

Bigtooth aspen Populus grandidentata 0.4 0.7 2.9 14.3

Birch Betula spp. 0.4 - 0.7 0.5

Blackgum Nyssa sylvatica Marshall 0.3 0.7 - -

Black oak Quercus velutina 3.9 4.9 2.0 10.7

Cherry Prunus spp. 3.4 0.7 0.9 0.6

Chestnut oak Quercus montana Willd. 11.5 6.5 4.4 11.9

Dogwood Cornus spp. 0.1 - - -

Eastern white
pine

Pinus strobus L. - - 0.9 -

Hickory Carya spp. 2.9 0.4 23.9 5.6

Northern red oak Quercus rubra 9.0 2.9 - 2.7

Pitch pine Pinus rigida MIll. - - 0.3 0.9

Red maple Acer rubrum 46.4 71.2 33.8 15.9

Sassafras Sassafras albidum 14.0 3.1 21.8 2.4

Scarlet oak Quercus coccinea Muenchh. 0.4 1.6 1.5 10.7

Serviceberry Amelanchier spp. 0.1 - - -

Striped maple Acer pensylvanicum L. 0.1 - - -

Sugar maple Acer saccharum Marshall - - 0.6 -

White oak Quercus alba 7.1 6.0 7.4 23.8

Aspen–oak (measured 2013)

Bigtooth aspen Populus grandidentata - 4.8 12.4 37.2

Black oak Quercus velutina 0.3 7.1 0.8 2.4

Cherry Prunus spp. 22.4 26.6 54.1 26.3

Dogwood Cornus spp. 1.4 1.3 - -

Hawthorn Crataegus Tourn. ex L. spp. 0.2 - - -

Hickory Carya spp. 0.6 1.8 - -
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Changes in live stem density and basal area were modeled
separately within each forest type (mixed-oak, aspen–oak,
unburned) and tree size class (seedlings, saplings, midstory,
overstory). Tree size classes were designated based on sam-
pling protocols and review of similar studies. Seedlings were
<2.54 cm DBH, >5.08 cm tall, and had at least two leaves not
bearing cotyledons; saplings were 2.54 to 10.15 cm DBH;

midstory trees were 10.16 to 19.99 cm DBH; and overstory
trees were stems ≥20 cm DBH. Seedling stem diameter was
not measured and therefore seedling basal area was not cal-
culated. Sapling trees were grouped in 2.54 cm DBH size
classes and basal area was calculated using the median diam-
eter of stems in each class. Stem density and basal area mea-
sures were log transformed, to satisfy assumptions of

Table 1 Pre-fire tree species composition by tree size class within State Game Lands 176, Pennsylvania, USA, where we measured
post-fire changes in forest structure and composition between 2009 and 2018 (Continued)

Pre-fire composition (% of total trees)

Seedlings Saplings Midstory Overstory

>5.08 cm tall, <2.54 cm
DBH

2.54-10.15 cm
DBH

10.16-19.99 cm
DBH

>19.99 cm
DBH

Northern red oak Quercus rubra 1.0 0.4 - -

Pitch pine Pinus rigida - - - 5.6

Quaking aspen Populus tremuloides Michx. - - 4.8 -

Red maple Acer rubrum 70.7 18.3 7.8 -

Scarlet oak Quercus coccinea 0.2 19.0 2.6 9.5

Serviceberry Amelanchier spp. 1.6 - - -

Spruce Picea Mill. spp. - 1.8 - -

White oak Quercus alba 1.4 19.8 17.5 19.0

Fig. 2 Absolute density (stems ha−1) and basal area (m2 ha−1) in the unburned, aspen–oak, and mixed-oak units of State Game Lands 176,
Pennsylvania, USA, where we measured post-fire changes in forest structure and composition between 2009 and 2018. Fire symbol ( ) indicates
the years that prescribed fire occurred in each unit. Yearly differences were determined using linear-mixed effects models and Tukey pairwise
comparisons. Asterisk (*) indicates that the mean is significantly different from the initial measurement. Caret (^) indicates that the mean is
significantly different than the previous measurement. Error bars represent standard error of the mean. Statistics were tested on log transformed
data and graphs show untransformed data. Note y-axis numbers vary by tree size class
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homoscedasticity and normality, for statistical analysis. To
account for zero values, due to the absence of trees at some
size classes and some years, log(x + 1) was used.

Forest composition
To evaluate change in species abundance following pre-
scribed fire, the relative density of each species within each
size class was calculated by sampling year. To determine
shifts in individual species abundance, initial relative
densities of each species in each plot were subtracted from
those of the most recent collection. Plot-level differences
were averaged to calculate mean and standard error over
the management unit. In half of the burned plots, there
were no living sapling trees post fire and these plots were
removed from the sapling portion of forest composition
analysis as relative abundance cannot be calculated when
no trees are present. To explore change in species groups
over time, most trees were grouped by species, but genus
level classification was used for hickories (Carya spp.; a
combination of Carya glabra P. Mill and Carya tometosa
Nutt.), cherries (Prunus spp.; mostly Prunus serotina Ehrh.
and some Prunus pensylvanica L.f.), birch (Betula spp.;
primarily Betula lenta L. with small numbers of Betula
papyrifera Marshall), dogwood (Cornus spp.; a mixture of
Cornus amomum Mill., Cornus racemosa Lam., and
Cornus florida L.), and serviceberry (Amelanchier spp.;
largely Amelanchier arborea Michx.), since some field ob-
servers only identified to the genus level. Species-specific
shifts were deemed notable when one standard error of
the mean change in relative density did not include zero.

Results
Forest structure
The largest structural changes following prescribed fire
were observed in the seedling and sapling layers with
less pronounced shifts in the midstory and overstory
(Fig. 2). Following a single prescribed fire (year 2010 in
mixed-oak and 2014 in aspen–oak), both burn units
showed large increases in seedling density two years
post fire. Seedling density in the aspen–oak unit
increased by more than six-fold between 2013 and 2015
(P < 0.0001) and mixed-oak unit seedling density
increased by 72% between 2009 and 2011 (P < 0.0001).
In both units, mean post-fire seedling densities were
between 78 000 and 102 000 stems ha−1. The cohort of
post-fire seedling regeneration remained over the
course of eight years in the single burn mixed-oak unit.
However, a second fire in the aspen–oak unit
significantly reduced seedling density (P < 0.0001), but
seedling density remained more than 100% greater than
before any fire.
Prior to prescribed fire, there were more sapling stems

in both the aspen–oak (2103 stems ha−1) and mixed-oak
(2862 stems ha−1) units than on the unburned inventory

sites (840 stems ha−1). However, within two growing sea-
sons post fire, both burned units had fewer saplings than
the unburned sites and between 50 and 92% fewer sap-
lings than were initially present (Fig. 2). Sapling density
in unburned plots did not change over the measurement
period (between 2009 and 2014; P = 0.29). In addition to
post-fire reductions in sapling density, following one
prescribed fire, sapling basal area in both burned units
dropped 87 to 89% (below 0.4 m2 ha−1), while the un-
burned sites remained at 1.7 m2 ha−1 during the same
years.
Living midstory stem density did not change on the un-

burned sites but decreased in both burned units (Fig. 2).
Midstory stem densities in the burned units were not
statistically different from pre-fire measurements prior
to the fifth growing season, at which point midstory
stem density in both burned units decreased by 46 to
48% (P < 0.05). Further reductions in midstory stem
density occurred in the mixed-oak unit between years
five and eight; however, these changes were minor and
statistically insignificant (P = 0.98). Midstory basal area
responded similarly and decreased following prescribed
fire (P < 0.001) by a total of 45% in the mixed-oak unit
and 42% in the aspen–oak unit.
Overstory structural change varied by burn unit (Fig. 2).

Between the initial and final measurements, overstory
stem density remained the same on the unburned sites
(208 stems ha−1); slightly but insignificantly increased,
through successional ingrowth, in the aspen–oak unit
(from 157 to 197 stems ha−1, P = 0.25); and decreased in
the mixed-oak unit within six years post burn (from 249
to 218 stems ha−1, P < 0.01). At the same time, over-
story basal area had minor increases on unburned sites
(from 21.2 to 22.8 m2 ha−1, P > 0.05) and in the mixed-
oak unit (from 21.1 to 22.1 m2 ha−1, P = 0.74) but, following
two fires, increased by 40% in the aspen–oak unit (9.0 to
12.7 m2 ha−1, P < 0.001).

Forest composition
The magnitude of tree species compositional change varied
by size class and burn unit. The aspen–oak unit had the lar-
gest changes in relative density and most compositional
change occurred in the seedling and sapling strata (Fig. 3).
After two prescribed fires, red maple (Acer rubrum L.)
seedling relative density decreased by 49% and black oak
(Quercus velutina Lam.) increased by 29%, becoming the
dominant seedling species. Other seedling shifts in the
aspen–oak unit included slight increases in northern red
oak (Quercus rubra L.; +9%), white oak (Quercus alba L.;
+11%), and quaking aspen (Populus tremuloides Michx.;
+19%) following prescribed fire; and decreases in cherry
(−18%). The top four most abundant pre-fire seedlings were
red maple, cherry, serviceberry, and white oak. After two
fires, the top four were black oak, red maple, quaking
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aspen, and white oak. At the sapling level, white oak had
the largest increase in relative density (+23%) and was the
most abundant sapling in the aspen–oak unit after two
fires. Additional increases occurred for black oak (+8%)
and, after two fires, cherry was the only other tree present
in the sapling layer. There were minor changes in relative
density of midstory and overstory trees and there were no
changes in the top four species in these size classes over the
sample period. The most abundant midstory tree in the
aspen–oak unit was cherry, followed by white oak, bigtooth
aspen (Populus grandidentata Michx.), and red maple. The
overstory was dominated by bigtooth aspen followed by a
mix of cherry, scarlet oak (Quercus coccinea Muenchh.),
and white oak.
In comparison to the aspen–oak unit, seedling

abundance by species in the mixed-oak unit barely
changed (Fig. 4). Both before prescribed fire and eight
years post fire, the three most abundant seedling spe-
cies were red maple, chestnut oak (Quercus montana
Willd.), and serviceberry. No species had a relative
density change more than 9% at the seedling level.
Sapling dominance in the mixed-oak unit shifted from
red maple to sassafras (Sassafras albidum [Nutt.]
Nees) between 2009 and 2018. Although red maple
saplings were still the second most abundant species,
they dropped in relative abundance by 41% and sassa-
fras increased by 35%. Minor increases in sapling
abundance occurred for black oak (+6%) and hickory

(+10%) with decreases measured in chestnut oak
(−2%), scarlet oak (−3%), and white oak (−5%). Simi-
lar to the aspen–oak unit, the midstory and overstory
trees in the mixed-oak unit showed little change in
relative abundance. Both before and eight years after
fire, the midstory was dominated by red maple, hick-
ory, sassafras, and white oak. White oak dominated
the overstory pre fire but was second to red maple
post fire. Bigtooth aspen remained the third most
abundant overstory tree and chestnut oak was re-
placed by black oak as the fourth most abundant.
On the unburned sites (Fig. 5), red maple and white oak

seedling abundance decreased over six growing seasons
but not by large amounts (<9%). Red maple remained as
the most dominant seedling species over time. Sapling,
midstory, and overstory tree relative density did not
notably change in unburned plots over time.

Discussion
Following prescribed fires, these Eastern mixed-oak
and aspen–oak forests experienced shifts in species
composition and changes in size-class structure
resulting from post-fire mortality and forest regrowth.
Large post-fire reductions of saplings (80 to 91%) and
midstory trees (46%) substantially decreased the density of
smaller-diameter stems. Prescribed fire effectively removed
stems <10 cm DBH likely due to their thinner bark and
lower crown heights, which made them more susceptible to

Fig. 3 Change in relative stem density between 2013 and 2018 (five growing seasons after initial prescribed fire) in the aspen–oak unit of State
Game Lands 176, Pennsylvania, USA, where we measured changes in forest structure and composition after prescribed fire. Error bars represent
standard error of the mean. “X” indicates that a given species was not present within a specific tree size class. N. red oak = northern red oak
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Fig. 4 Change in relative density between 2009 and 2018 (eight years after prescribed fire) in the mixed-oak unit of State Game Lands 176,
Pennsylvania, USA, where we measured changes in forest structure and composition after prescribed fire. Error bars represent standard error of
the mean. “X” indicates that a given species was not present within a specific tree size class. N. red oak = northern red oak; E. white pine =
eastern white pine

Fig. 5 Change in relative density between 2009 and 2014 in the unburned forests of State Game Lands 176, Pennsylvania, USA, where we
measured changes in forest structure and composition after prescribed fire. Error bars represent standard error of the mean. “X” indicates that a
given species was not present within a specific tree size class. N. red oak = northern red oak
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fire damage than larger-diameter trees. Seedling density in-
creased potentially due to basal sprouting from below-
ground energy stores (Blankenship and Arthur 2006),
temporarily increased sunlight on the forest floor (Chiang
et al. 2005), and a modified seed bed due to litter and duff
consumption (Arthur et al. 2017). Our findings are
consistent with prescribed fire studies in other Eastern
deciduous forests (Peterson and Reich 2001; Schwilk
et al. 2009; Hutchinson et al. 2012; Arthur et al. 2015;
Knapp et al. 2015) that show that single, low-severity
burns lead to similar structural changes across
regions, but compositional changes require repeat
burns or pre-fire management (Brose et al. 2013).
However, in contrast to similar studies (Franklin et al.
2003; Blankenship and Arthur 2006), we found that,
after a single prescribed fire, overstory stem density
decreased (by 12% in the mixed-oak unit) over eight
years. At the same time, overstory basal area
increased, likely as a result of reduced competition
and increased post-fire resource availability. The bulk of
structural changes occurred between two and five years
post fire; however, response varied among tree species.
Species compositional changes were greatest in the aspen–

oak unit that experienced a combination of pre-fire thinning
and repeat burning. Among tree seedlings and saplings, the
relative abundance of maple decreased and the abundance of
oak increased after prescribed fire. However, the response of
individual species was nuanced; for example, in both mixed-
oak and aspen–oak units, black oak increased or maintained
abundance across all size classes, whereas saplings and over-
story stems of scarlet oak, a species with thinner bark
(Chamberlain and Meyer 1950; Spalt and Reifsnyder 1962),
decreased. White oak responded differently between the
two units with clear increases at all size classes in the
aspen–oak unit and steady or decreasing abundance in the
mixed-oak unit. Both northern red oak and chestnut
oak abundance remained constant regardless of size class
and burn unit. Interspecific variation in post-fire response
is due to multiple direct and indirect fire effects (Hood
et al. 2018) such as timing of burn and tree regener-
ation stage (Arthur et al. 2012), forest floor light
availability (Dillaway et al. 2007), and differences in
tree bark thickness (Spalt and Reifsnyder 1962; Miles
and Smith 2009; Hammond et al. 2015). In general,
trees with thinner bark are more vulnerable to fire
(Pellegrini et al. 2017). However, large-diameter, thin-
barked trees such as maple can withstand low-severity
prescribed fire (Keyser et al. 2018), and in the mixed-
oak unit, overstory red maple trees increased in rela-
tive abundance following one prescribed fire.
Although maple and oak made up a large component of

the forests in this study, a suite of other species and genera
were present. Of these, sassafras, hickory, quaking aspen,
and cherry had notable changes in relative abundance in

at least one size class. Sassafras abundance increased in
the mixed-oak sapling layer eight years after fire and went
from the fifth most abundant to the first most abundant
species. Sassafras’s high growth rate and opportunistic re-
generation post fire (Iverson et al. 1999) account for this
compositional change. Additionally, hickory saplings in-
creased in the mixed-oak unit and became the fourth
most abundant species in the sapling size class, supporting
the prescribed fire objective to promote hickory at various
stages of succession in the mixed-oak unit.
Within the aspen–oak unit, quaking aspen, a species

with root suckers stimulated by fire (Iverson et al. 1999),
increased relative abundance in the seedling category
one year after the second burn; however, the biggest
non-oak, non-maple changes were found in cherry (Pru-
nus sp.) trees. After two fires and five years, overstory
cherry trees increased in abundance while cherry seed-
lings declined. Although cherry trees, like maple, are
considered pyrophobic (Nowacki and Abrams 2015) or
fire-intolerant, the two genera differ in their shade toler-
ance (Knott et al. 2019), with maple growing better in
shade than cherry. Any post-fire increases in forest floor
light availability were likely temporary due to rapid
growth of forest shrubs (Chiang et al. 2005) and living
overstory trees, effectively limiting cherry regeneration
and highlighting how fire and shade tolerance interact to
influence post-fire vegetation growth over time.
Forests in this study are managed to “protect wildlife and

their habitats” (Pennsylvania Game Commission 2020) with
prescribed fire objectives focused on maintaining overstory
oak trees and top-killing young maple, birch, and aspen.
Overstory oak increased 27% in the aspen–oak unit but de-
creased 24%, primarily among scarlet oaks, in the mixed-
oak unit over eight years, partially achieving PGC burn ob-
jectives for overstory oak survival. Red maple seedlings and
saplings decreased in relative abundance, birch and big-
tooth aspen did not change, and quaking aspen seedling
abundance increased where overstory aspen were dominant.
Although the burn objectives were not met in full, post-fire
reductions in red maple seedling and sapling trees were
measured over eight years while red maple remained the
dominant species on unburned plots. Species-specific
responses to prescribed fire indicate a potential trajectory of
compositional changes to be maintained through additional
monitoring, treatments, and management.
Overall forest composition plays a key role in vegetation–

fire relationships, and localized studies, like ours, are neces-
sary to measure the extent of forest heterogeneity following
prescribed fire disturbance. The degree of compositional
change following prescribed fire is determined by multiple
interacting factors (Chazdon 2008; Stroud 2012; Chapman
and McEwan 2016) and the aspen–oak forest, where pre-fire
overstory thinning and two prescribed fires were used, had
more pronounced compositional shifts than the single burn,
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mixed-oak forest. However, significant structural changes oc-
curred in both forests after just one burn. Prescribed fire
goals focused on changing forest structure can be achieved
in varied mid-Atlantic oak forest types, while goals focused
on compositional shifts should vary based on forest type,
management history, and opportunity to apply multiple
burns.
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Additional file 1. Prescribed fire information for five burns conducted
between 2010 and 2017 within State Game Lands 176, Pennsylvania,
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visually measured post fire. NR stands for not recorded. All other
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