1,962 research outputs found
Three red giants with substellar-mass companions
We present three giant stars from the ongoing Penn State-Toru\'n Planet
Search with the Hobby-Eberly Telescope, which exhibit radial velocity
variations that point to a presence of planetary --mass companions around them.
BD+49 828 is a K0 giant with a = minimum mass companion in
AU (d),
orbit. HD 95127, a log/=,
, K0 giant has a = minimum mass companion in
AU (d), orbit.
Finally, HD 216536, is a K0 giant with a minimum mass companion in
AU (d),
orbit. Both, HD 95127 b and HD 216536 b in their
compact orbits, are very close to the engulfment zone and hence prone to
ingestion in the near future. BD+49 828 b is among the longest period planets
detected with the radial velocity technique until now and it will remain
unaffected by stellar evolution up to a very late stage of its host. We discuss
general properties of planetary systems around evolved stars and planet
survivability using existing data on exoplanets in more detail.Comment: 47 pages, 11 figures. Accepted by Ap
TAPAS - Tracking Advanced Planetary Systems with HARPS-N. II. Super Li-rich giant HD 107028
Lithium rich giant stars are rare objects. For some of them, Li enrichment
exceeds abundance of this element found in solar system meteorites, suggesting
that these stars have gone through a Li enhancement process. We identified a Li
rich giant HD 107028 with A(Li) > 3.3 in a sample of evolved stars observed
within the PennState Torun Planet Search. In this work we study different
enhancement scenarios and we try to identify the one responsible for Li
enrichment for HD 107028. We collected high resolution spectra with three
different instruments, covering different spectral ranges. We determine stellar
parameters and abundances of selected elements with both equivalent width
measurements and analysis, and spectral synthesis. We also collected multi
epoch high precision radial velocities in an attempt to detect a companion.
Collected data show that HD 107028 is a star at the base of Red Giant Branch.
Except for high Li abundance, we have not identified any other anomalies in its
chemical composition, and there is no indication of a low mass or stellar
companion. We exclude Li production at the Luminosity Function Bump on RGB, as
the effective temperature and luminosity suggest that the evolutionary state is
much earlier than RGB Bump. We also cannot confirm the Li enhancement by
contamination, as we do not observe any anomalies that are associated with this
scenario. After evaluating various scenarios of Li enhancement we conclude that
the Li-overabundance of HD 107028 originates from Main Sequence evolution, and
may be caused by diffusion process.Comment: Accepted for publication in A&
Tracking Advanced Planetary Systems (TAPAS) with HARPS-N. III. HD 5583 and BD+15 2375 - two cool giants with warm companions
Evolved stars are crucial pieces to understand the dependency of the planet
formation mechanism on the stellar mass and to explore deeper the mechanism
involved in star-planet interactions. Over the past ten years, we have
monitored about 1000 evolved stars for radial velocity variations in search for
low-mass companions under the Penn State - Torun Centre for Astronomy Planet
Search program with the Hobby-Eberly Telescope. Selected prospective candidates
that required higher RV precision measurements have been followed with HARPS-N
at the 3.6 m Telescopio Nazionale Galileo under the TAPAS project.
We aim to detect planetary systems around evolved stars to be able to build
sound statistics on the frequency and intrinsic nature of these systems, and to
deliver in-depth studies of selected planetary systems with evidence of
star-planet interaction processes. For HD 5583 we obtained 14 epochs of precise
RV measurements collected over 2313 days with the Hobby-Eberly Telescope (HET),
and 22 epochs of ultra-precise HARPS-N data collected over 976 days. For BD+15
2375 we collected 24 epochs of HET data over 3286 days and 25 epochs of HARPS-S
data over 902 days.
We report the discovery of two planetary mass objects orbiting two evolved
Red Giant stars: HD~5583 has a m sin i = 5.78 M companion at 0.529~AU in
a nearly circular orbit (e=0.076), the closest companion to a giant star
detected with the RV technique, and BD+15~2735 that with a m sin i= 1.06
M holds the record of the lightest planet found so far orbiting an
evolved star (in a circular e=0.001, 0.576~AU orbit). These are the third and
fourth planets found within the TAPAS project, a HARPS-N monitoring of evolved
planetary systems identified with the Hobby-Eberly Telescope.Comment: 9 pages, 6 figures. Accepted by Astronomy and Astrophysic
Tracking Advanced Planetary Systems (TAPAS) with HARPS-N. V.: A Massive Jupiter orbiting the very low metallicity giant star BD+03 2562 and a possible planet around HD~103485
We present two evolved stars from the TAPAS (Tracking Advanced PlAnetary
Systems) with HARPS-N project devoted to RV precision measurements of
identified candidates within the PennState - Torun Centre for Astronomy Planet
Search. Evolved stars with planets are crucial to understand the dependency of
the planet formation mechanism on the mass and metallicity of the parent star
and to study star-planet interactions. The paper is based on precise radial
velocity (RV) measurements, for HD 103485 we collected 57 epochs over 3317 days
with the Hobby-Eberly Telescope and its High Resolution Spectrograph and 18
ultra-precise HARPS-N data over 919 days. For BD+03 2562 we collected 46 epochs
of HET data over 3380 days and 19 epochs of HARPS-N data over 919 days. We
present the analysis of the data and the search for correlations between the RV
signal and stellar activity, stellar rotation and photometric variability.
Based on the available data, we interpret the RV variations measured in both
stars as Keplerian motion. Both stars have masses close to Solar (1.11 and
1.14), very low metallicities ([Fe/H]=-0.50 and -0.71), and, both have Jupiter
planetary mass companions (m sin i=7 and 6.4 Mj), in close to terrestrial
orbits (1.4 and 1.3~au), with moderate eccentricities (e=0.34 and 0.2).
However, we cannot totally exclude that the signal in the case of HD~103485 is
due to rotational modulation of active regions. Based on the current data, we
conclude that BD+03 2562 has a bona fide planetary companion while for HD
103485 we cannot totally exclude that the best explanation for the RV signal
modulations is not the existence of a planet but stellar activity. If, the
interpretation remains that both stars have planetary companions they represent
systems orbiting very evolved stars with very low metallicities, a challenge to
the conditions required for the formation of massive giant gas planets.Comment: Acepted A&A 12 pages, 11 figure
Characteristics of ion-acoustic solitary wave in a laboratory dusty plasma under the influence of ion-beam
We study the influence of ion beam and charged dust impurity on the
propagation of dust ion-acoustic (DIA) solitary wave (SW) in an unmagnetized
plasma consisting of Boltzmann distributed electrons, positive ions, positive
ion beam and negatively charged immobile dusts in a double plasma device. On
interacting with an ion beam, the solitary wave is bifurcated into a
compressive fast and a rarefactive slow beam mode, and appears along with the
primary wave. However, there exists a critical velocity of the beam beyond
which the amplitude of the fast solitary wave starts diminishing and
rarefactive slow beam mode propagates with growing amplitude. Whereas, the
presence of charged dust impurity in the plasma reduces this critical beam
velocity and a substantial modification in the phase velocity of the slow beam
mode is observed with increasing dust density. Furthermore, the nonlinear wave
velocity (Mach number) as well as the width of the compressive solitons are
measured for different beam velocity and dust density, and are compared with
those obtained from the K-dV equation. The experimental results are found in a
well agreement with the theoretical predictions.Comment: 24 pages, 09 figures; In the revised version (to appear in Phys.
Plasmas), the title has been changed, two figures have been removed, some
references are added and typos have been rectified wherever necessar
- …
