22,651 research outputs found

    Hearing and morphological specializations of the mojarra (<i>Eucinostomus argenteus</i>)

    Get PDF
    The air-filled swimbladder acts as an acoustic amplifier for some fish by converting sound pressure into particle motion, which is transmitted to the inner ear. Here, we describe in detail the specialized connection between the swimbladder and ear in the mojarra, as well as a modified cone on the anal fin in which the posterior end of the swimbladder sits. Hearing tests show the mojarra has better hearing sensitivity than other species of fish without a connection. However, mojarras do not seem to use this adaptation for communication. Furthermore, the inclined position of the swimbladder may help the fish to catch their prey more easily, as the swimbladder will be horizontal when they are picking up benthic prey

    A model for fluctuating inflaton coupling: (s)neutrino induced adiabatic perturbations and non-thermal leptogenesis

    Get PDF
    We discuss an unique possibility of generating adiabatic density perturbations and leptogenesis from the spatial fluctuations of the inflaton decay rate. The key assumption is that the initial isocurvature perturbations are created in the right handed sneutrino sector during inflation which is then converted into adiabatic perturbations when the inflaton decays. We discuss distinct imprints on the cosmic micro wave background radiation, which can distinguish non-thermal versus thermal leptogenesis.Comment: 4 pages, version to be published in PR

    Conserved masses in GHS Einstein and string black holes

    Full text link
    We analyze the relationship between quasilocal masses calculated for solutions of conformally related theories. We show that the ADM mass of a static, spherically symmetric solution is conformally invariant (up to a constant factor) only if the background action functional is conformally invariant. Thus, the requirement of conformal invariance places restrictions on the choice of reference spacetimes. We calculate the mass of the black hole solutions obtained by Garfinkle, Horowitz, and Strominger (GHS) for both the string and the Einstein metrics. In addition, the quasilocal thermodynamic quantities in the string metrics are computed and discussed.Comment: 16 pages REVTeX with packages amsfonts and amssym

    A VLA Survey For Faint Compact Radio Sources in the Orion Nebula Cluster

    Full text link
    We present Karl G. Janksy Very Large Array (VLA) 1.3 cm, 3.6 cm, and 6 cm continuum maps of compact radio sources in the Orion Nebular Cluster. We mosaicked 34 square arcminutes at 1.3 cm, 70 square arcminutes at 3.6 cm and 109 square arcminutes at 6 cm, containing 778 near-infrared detected YSOs and 190 HST-identified proplyds (with significant overlap between those characterizations). We detected radio emission from 175 compact radio sources in the ONC, including 26 sources that were detected for the first time at these wavelengths. For each detected source we fit a simple free-free and dust emission model to characterize the radio emission. We extrapolate the free-free emission spectrum model for each source to ALMA bands to illustrate how these measurements could be used to correctly measure protoplanetary disk dust masses from sub-millimeter flux measurements. Finally, we compare the fluxes measured in this survey with previously measured fluxes for our targets, as well as four separate epochs of 1.3 cm data, to search for and quantify variability of our sources.Comment: 13 pages, 6 figures, 4 tables, ApJ, in pres

    Dynamical N-body Equlibrium in Circular Dilaton Gravity

    Full text link
    We obtain a new exact equilibrium solution to the N-body problem in a one-dimensional relativistic self-gravitating system. It corresponds to an expanding/contracting spacetime of a circle with N bodies at equal proper separations from one another around the circle. Our methods are straightforwardly generalizable to other dilatonic theories of gravity, and provide a new class of solutions to further the study of (relativistic) one-dimensional self-gravitating systems.Comment: 4 pages, latex, reference added, minor changes in wordin

    Chaos in an Exact Relativistic 3-body Self-Gravitating System

    Get PDF
    We consider the problem of three body motion for a relativistic one-dimensional self-gravitating system. After describing the canonical decomposition of the action, we find an exact expression for the 3-body Hamiltonian, implicitly determined in terms of the four coordinate and momentum degrees of freedom in the system. Non-relativistically these degrees of freedom can be rewritten in terms of a single particle moving in a two-dimensional hexagonal well. We find the exact relativistic generalization of this potential, along with its post-Newtonian approximation. We then specialize to the equal mass case and numerically solve the equations of motion that follow from the Hamiltonian. Working in hexagonal-well coordinates, we obtaining orbits in both the hexagonal and 3-body representations of the system, and plot the Poincare sections as a function of the relativistic energy parameter η\eta . We find two broad categories of periodic and quasi-periodic motions that we refer to as the annulus and pretzel patterns, as well as a set of chaotic motions that appear in the region of phase-space between these two types. Despite the high degree of non-linearity in the relativistic system, we find that the the global structure of its phase space remains qualitatively the same as its non-relativisitic counterpart for all values of η\eta that we could study. However the relativistic system has a weaker symmetry and so its Poincare section develops an asymmetric distortion that increases with increasing η\eta . For the post-Newtonian system we find that it experiences a KAM breakdown for η0.26\eta \simeq 0.26: above which the near integrable regions degenerate into chaos.Comment: latex, 65 pages, 36 figures, high-resolution figures available upon reques

    Exact Black Hole and Cosmological Solutions in a Two-Dimensional Dilaton-Spectator Theory of Gravity

    Get PDF
    Exact black hole and cosmological solutions are obtained for a special two-dimensional dilaton-spectator (ϕψ\phi-\psi) theory of gravity. We show how in this context any desired spacetime behaviour can be determined by an appropriate choice of a dilaton potential function V(ϕ)V(\phi) and a ``coupling function'' l(ϕ)l(\phi) in the action. We illustrate several black hole solutions as examples. In particular, asymptotically flat double- and multiple- horizon black hole solutions are obtained. One solution bears an interesting resemblance to the 2D2D string-theoretic black hole and contains the same thermodynamic properties; another resembles the 4D4D Reissner-Nordstrom solution. We find two characteristic features of all the black hole solutions. First the coupling constants in l(ϕ)l(\phi) must be set equal to constants of integration (typically the mass). Second, the spectator field ψ\psi and its derivative ψ\psi^{'} both diverge at any event horizon. A test particle with ``spectator charge" ({\it i.e.} one coupled either to ψ\psi or ψ\psi^{'}), will therefore encounter an infinite tidal force at the horizon or an ``infinite potential barrier'' located outside the horizon respectively. We also compute the Hawking temperature and entropy for our solutions. In 2D2D FRWFRW cosmology, two non-singular solutions which resemble two exact solutions in 4D4D string-motivated cosmology are obtained. In addition, we construct a singular model which describes the 4D4D standard non-inflationary big bang cosmology (bigbangradiationdustbig-bang\rightarrow radiation\rightarrow dust). Motivated by the similaritiesbetween 2D2D and 4D4D gravitational field equations in FRWFRW cosmology, we briefly discuss a special 4D4D dilaton-spectator action constructed from the bosonic part of the low energy heterotic string action andComment: 34 pgs. Plain Tex, revised version contains some clarifying comments concerning the relationship between the constants of integration and the coupling constants

    B-L Violating Nucleon Decay and GUT Scale Baryogenesis in SO(10)

    Full text link
    We show that grand unified theories based on SO(10) generate naturally the next-to-leading baryon number violating operators of dimension seven. These operators, which violate B-L, lead to unconventional decays of the nucleon such as n -> e^-K^+, e^- \pi^+ and p -> \nu \pi^+. In two-step breaking schemes of non-supersymmetric SO(10), nucleon lifetime for decays into these modes is found to be within reach of experiments. We also identify supersymmetric scenarios where these decays may be accessible, consistent with gauge coupling unification. Further, we show that the (B-L)-asymmetry generated in the decays of GUT scale scalar bosons and/or gauge bosons can explain consistently the observed baryon asymmetry of the universe. The induced (B-L)-asymmetry is sphaleron-proof, and survives down to the weak scale without being erased by the electroweak interactions. This mechanism works efficiently in a large class of non-SUSY and SUSY SO(10) models, with either a 126 or a 16 Higgs field employed for rank reduction. In minimal models the induced baryon asymmetry is tightly connected to the masses of quarks, leptons and neutrinos and is found to be compatible with observations.Comment: 26 pages, 9 figure

    Misner String Entropy

    Get PDF
    I show that gravitational entropy can be ascribed to spacetimes containing Misner strings (the gravitational analogues of Dirac strings), even in the absence of any other event horizon (or bolt) structures. This result follows from an extension of proposals for evaluating the stress-energy of a gravitational system which are motivated by the AdS/CFT correspondence.Comment: revtex, 5 pages, references added, typo correcte
    corecore