491 research outputs found

    Surface effects and spin glass state in Co₃O₄ coated MnFe₂O₄ nanoparticles

    Get PDF

    Disordered and Frustrated Magnetization in Coated MnFe₂O₄ Nanoparticles Prepared by Microwave Plasma Synthesis

    Get PDF
    Disordered and frustrated magnetization of different surface coated (Cr2O3, Co3O4, ZrO2, and SiO2) MnFe2O4 nanoparticles have been studied using SQUID-magnetometry. Magnetic measurements, such as ZFC/FC and ac-susceptibility evidence surface spin-glass behavior. ZFC/FC curves were also compared with numerical simulation to get information about effective anisotropy constants. Frequency dependent ac susceptibility results were analyzed by using Arrhenius, Vogel Fulcher and dynamic scaling laws to further confirm the spin-glass behavior. It is observed that the strength of surface spins disorder and frustration strongly depends upon the type of the coating material. All these analyses signify that disordered and frustrated surface magnetization in MnFe2O4 nanoparticles greatly depend on the type of the surface coating materials and are useful for controlling the nanoparticle’s magnetism for different practical applications

    Flight Servicing of Robotic Refueling Mission 3

    Get PDF
    The Robotic Refueling Mission 3 (RRM3) payload launched aboard a SpaceX rocket en route to the International Space Station on December 5th, 2018. The Goddard Space Flight Center designed payload carried approximately 50 liters of liquid methane onboard, with a mission to demonstrate long term storage and transfer of the cryogenic fluid in microgravity. Kennedy Space Center (KSC) was tasked to design, fabricate, test, and operate a system equipped to fill an RRM3 dewar with liquid methane prior to launch. Though KSC has a rich history of fueling rockets and payloads, no such operations had previously been accomplished using liquid methane. As such, all of the hardware and processes had to be developed from scratch. The completed ground system design, along with the verification and validation testing will be outlined in this paper. Several challenges that were met and overcome during procurement of the high purity methane are described. In addition, budget restrictions prohibited fueling operations from occurring in traditional processing facilities. The unique and creative solutions which were required to maintain payload cleanliness during cryogenic servicing are also detailed

    Flight Servicing of Robotic Refueling Mission 3

    Get PDF
    The Robotic Refueling Mission 3 (RRM3) payload launched aboard a SpaceX rocket en route to the International Space Station on December 5th, 2018. The Goddard Space Flight Center designed payload carried approximately 50 liters of liquid methane onboard, with a mission to demonstrate long term storage and transfer of the cryogenic fluid in microgravity. Kennedy Space Center (KSC) was tasked to design, fabricate, test, and operate a system equipped to fill an RRM3 dewar with liquid methane prior to launch. Though KSC has a rich history of fueling rockets and payloads, no such operations had previously been accomplished using liquid methane. As such, all of the hardware and processes had to be developed from scratch. The completed ground system design, along with the verification and validation testing will be outlined in this paper. Several challenges that were met and overcome during procurement of the high purity methane are described. In addition, budget restrictions prohibited fueling operations from occurring in traditional processing facilities. The unique and creative solutions which were required to maintain payload cleanliness during cryogenic servicing are also detailed
    corecore