1,591 research outputs found
Analytical Solution of a Stochastic Content Based Network Model
We define and completely solve a content-based directed network whose nodes
consist of random words and an adjacency rule involving perfect or approximate
matches, for an alphabet with an arbitrary number of letters. The analytic
expression for the out-degree distribution shows a crossover from a leading
power law behavior to a log-periodic regime bounded by a different power law
decay. The leading exponents in the two regions have a weak dependence on the
mean word length, and an even weaker dependence on the alphabet size. The
in-degree distribution, on the other hand, is much narrower and does not show
scaling behavior. The results might be of interest for understanding the
emergence of genomic interaction networks, which rely, to a large extent, on
mechanisms based on sequence matching, and exhibit similar global features to
those found here.Comment: 13 pages, 5 figures. Rewrote conclusions regarding the relevance to
gene regulation networks, fixed minor errors and replaced fig. 4. Main body
of paper (model and calculations) remains unchanged. Submitted for
publicatio
A study of blow-ups in the Keller-Segel model of chemotaxis
We study the Keller-Segel model of chemotaxis and develop a composite
particle-grid numerical method with adaptive time stepping which allows us to
accurately resolve singular solutions. The numerical findings (in two
dimensions) are then compared with analytical predictions regarding formation
and interaction of singularities obtained via analysis of the stochastic
differential equations associated with the Keller-Segel model
Suffix Tree of Alignment: An Efficient Index for Similar Data
We consider an index data structure for similar strings. The generalized
suffix tree can be a solution for this. The generalized suffix tree of two
strings and is a compacted trie representing all suffixes in and
. It has leaves and can be constructed in time.
However, if the two strings are similar, the generalized suffix tree is not
efficient because it does not exploit the similarity which is usually
represented as an alignment of and .
In this paper we propose a space/time-efficient suffix tree of alignment
which wisely exploits the similarity in an alignment. Our suffix tree for an
alignment of and has leaves where is the sum of
the lengths of all parts of different from and is the sum of the
lengths of some common parts of and . We did not compromise the pattern
search to reduce the space. Our suffix tree can be searched for a pattern
in time where is the number of occurrences of in and
. We also present an efficient algorithm to construct the suffix tree of
alignment. When the suffix tree is constructed from scratch, the algorithm
requires time where is the sum of the lengths
of other common substrings of and . When the suffix tree of is
already given, it requires time.Comment: 12 page
Oligonucleotide Frequencies of Barcoding Loci Can Discriminate Species across Kingdoms
Background: DNA barcoding refers to the use of short DNA sequences for rapid identification of species. Genetic distance or character attributes of a particular barcode locus discriminate the species. We report an efficient approach to analyze short sequence data for discrimination between species. Methodology and Principal Findings: A new approach, Oligonucleotide Frequency Range (OFR) of barcode loci for species discrimination is proposed. OFR of the loci that discriminates between species was characteristic of a species, i.e., the maxima and minima within a species did not overlap with that of other species. We compared the species resolution ability of different barcode loci using p-distance, Euclidean distance of oligonucleotide frequencies, nucleotide-character based approach and OFR method. The species resolution by OFR was either higher or comparable to the other methods. A short fragment of 126 bp of internal transcribed spacer region in ribosomal RNA gene was sufficient to discriminate a majority of the species using OFR. Conclusions/Significance: Oligonucleotide frequency range of a barcode locus can discriminate between species. Ability to discriminate species using very short DNA fragments may have wider applications in forensic and conservation studies
Posterior-based proposals for speeding up Markov chain Monte Carlo
Markov chain Monte Carlo (MCMC) is widely used for Bayesian inference in
models of complex systems. Performance, however, is often unsatisfactory in
models with many latent variables due to so-called poor mixing, necessitating
development of application specific implementations. This paper introduces
"posterior-based proposals" (PBPs), a new type of MCMC update applicable to a
huge class of statistical models (whose conditional dependence structures are
represented by directed acyclic graphs). PBPs generates large joint updates in
parameter and latent variable space, whilst retaining good acceptance rates
(typically 33%). Evaluation against other approaches (from standard Gibbs /
random walk updates to state-of-the-art Hamiltonian and particle MCMC methods)
was carried out for widely varying model types: an individual-based model for
disease diagnostic test data, a financial stochastic volatility model, a mixed
model used in statistical genetics and a population model used in ecology.
Whilst different methods worked better or worse in different scenarios, PBPs
were found to be either near to the fastest or significantly faster than the
next best approach (by up to a factor of 10). PBPs therefore represent an
additional general purpose technique that can be usefully applied in a wide
variety of contexts.Comment: 54 pages, 11 figures, 2 table
Evolutionary dynamics for persistent cooperation in structured populations
The emergence and maintenance of cooperative behavior is a fascinating topic in evolutionary biology and social science. The public goods game (PGG) is a paradigm for exploring cooperative behavior. In PGG, the total resulting payoff is divided equally among all participants. This feature still leads to the dominance of defection without substantially magnifying the public good by a multiplying factor. Much effort has been made to explain the evolution of cooperative strategies, including a recent model in which only a portion of the total benefit is shared by all the players through introducing a new strategy named persistent cooperation. A persistent cooperator is a contributor who is willing to pay a second cost to retrieve the remaining portion of the payoff contributed by themselves. In a previous study, this model was analyzed in the framework of well-mixed populations. This paper focuses on discussing the persistent cooperation in lattice-structured populations. The evolutionary dynamics of the structured populations consisting of three types of competing players (pure cooperators, defectors, and persistent cooperators) are revealed by theoretical analysis and numerical simulations. In particular, the approximate expressions of fixation probabilities for strategies are derived on one-dimensional lattices. The phase diagrams of stationary states, and the evolution of frequencies and spatial patterns for strategies are illustrated on both one-dimensional and square lattices by simulations. Our results are consistent with the general observation that, at least in most situations, a structured population facilitates the evolution of cooperation. Specifically, here we find that the existence of persistent cooperators greatly suppresses the spreading of defectors under more relaxed conditions in structured populations compared to that obtained in well-mixed populations
Translocation of structured polynucleotides through nanopores
We investigate theoretically the translocation of structured RNA/DNA
molecules through narrow pores which allow single but not double strands to
pass. The unzipping of basepaired regions within the molecules presents
significant kinetic barriers for the translocation process. We show that this
circumstance may be exploited to determine the full basepairing pattern of
polynucleotides, including RNA pseudoknots. The crucial requirement is that the
translocation dynamics (i.e., the length of the translocated molecular segment)
needs to be recorded as a function of time with a spatial resolution of a few
nucleotides. This could be achieved, for instance, by applying a mechanical
driving force for translocation and recording force-extension curves (FEC's)
with a device such as an atomic force microscope or optical tweezers. Our
analysis suggests that with this added spatial resolution, nanopores could be
transformed into a powerful experimental tool to study the folding of nucleic
acids.Comment: 9 pages, 5 figure
Single Molecule Statistics and the Polynucleotide Unzipping Transition
We present an extensive theoretical investigation of the mechanical unzipping
of double-stranded DNA under the influence of an applied force. In the limit of
long polymers, there is a thermodynamic unzipping transition at a critical
force value of order 10 pN, with different critical behavior for homopolymers
and for random heteropolymers. We extend results on the disorder-averaged
behavior of DNA's with random sequences to the more experimentally accessible
problem of unzipping a single DNA molecule. As the applied force approaches the
critical value, the double-stranded DNA unravels in a series of discrete,
sequence-dependent steps that allow it to reach successively deeper energy
minima. Plots of extension versus force thus take the striking form of a series
of plateaus separated by sharp jumps. Similar qualitative features should
reappear in micromanipulation experiments on proteins and on folded RNA
molecules. Despite their unusual form, the extension versus force curves for
single molecules still reveal remnants of the disorder-averaged critical
behavior. Above the transition, the dynamics of the unzipping fork is related
to that of a particle diffusing in a random force field; anomalous,
disorder-dominated behavior is expected until the applied force exceeds the
critical value for unzipping by roughly 5 pN.Comment: 40 pages, 18 figure
- …