106 research outputs found
Pullulan for advanced sustainable body- And skin-contact applications
The present review had the aim of describing the methodologies of synthesis and properties of biobased pullulan, a microbial polysaccharide investigated in the last decade because of its interesting potentialities in several applications. After describing the implications of pullulan in nano-technology, biodegradation, compatibility with body and skin, and sustainability, the current applications of pullulan are described, with the aim of assessing the potentialities of this biopolymer in the biomedical, personal care, and cosmetic sector, especially in applications in contact with skin
Quantum interference and the formation of the proximity effect in chaotic normal-metal/superconducting structures
We discuss a number of basic physical mechanisms relevant to the formation of
the proximity effect in superconductor/normal metal (SN) systems. Specifically,
we review why the proximity effect sharply discriminates between systems with
integrable and chaotic dynamics, respectively, and how this feature can be
incorporated into theories of SN systems. Turning to less well investigated
terrain, we discuss the impact of quantum diffractive scattering on the
structure of the density of states in the normal region. We consider ballistic
systems weakly disordered by pointlike impurities as a test case and
demonstrate that diffractive processes akin to normal metal weak localization
lead to the formation of a hard spectral gap -- a hallmark of SN systems with
chaotic dynamics. Turning to the more difficult case of clean systems with
chaotic boundary scattering, we argue that semiclassical approaches, based on
classifications in terms of classical trajectories, cannot explain the gap
phenomenon. Employing an alternative formalism based on elements of
quasiclassics and the ballistic -model, we demonstrate that the inverse
of the so-called Ehrenfest time is the relevant energy scale in this context.
We discuss some fundamental difficulties related to the formulation of low
energy theories of mesoscopic chaotic systems in general and how they prevent
us from analysing the gap structure in a rigorous manner. Given these
difficulties, we argue that the proximity effect represents a basic and
challenging test phenomenon for theories of quantum chaotic systems.Comment: 21 pages (two-column), 6 figures; references adde
Energy dependent counting statistics in diffusive superconducting tunnel junctions
We present an investigation of the energy dependence of the full charge
counting statistics in diffusive
normal-insulating-normal-insulating-superconducting junctions. It is found that
the current in general is transported via a correlated transfer of pairs of
electrons. Only in the case of strongly asymmetric tunnel barriers or energies
much larger than the Thouless energy is the pair transfer uncorrelated. The
second cumulant, the noise, is found to depend strongly on the applied voltage
and temperature. For a junction resistance dominated by the tunnel barrier to
the normal reservoir, the differential shot noise shows a double peak feature
at voltages of the order of the Thouless energy, a signature of an ensemble
averaged electron-hole resonance.Comment: 8 pages, 5 figure
Quantum Measurement Theory in Gravitational-Wave Detectors
The fast progress in improving the sensitivity of the gravitational-wave (GW)
detectors, we all have witnessed in the recent years, has propelled the
scientific community to the point, when quantum behaviour of such immense
measurement devices as kilometer-long interferometers starts to matter. The
time, when their sensitivity will be mainly limited by the quantum noise of
light is round the corner, and finding the ways to reduce it will become a
necessity. Therefore, the primary goal we pursued in this review was to
familiarize a broad spectrum of readers with the theory of quantum measurements
in the very form it finds application in the area of gravitational-wave
detection. We focus on how quantum noise arises in gravitational-wave
interferometers and what limitations it imposes on the achievable sensitivity.
We start from the very basic concepts and gradually advance to the general
linear quantum measurement theory and its application to the calculation of
quantum noise in the contemporary and planned interferometric detectors of
gravitational radiation of the first and second generation. Special attention
is paid to the concept of Standard Quantum Limit and the methods of its
surmounting.Comment: 147 pages, 46 figures, 1 table. Published in Living Reviews in
Relativit
Kondo effect in coupled quantum dots: a Non-crossing approximation study
The out-of-equilibrium transport properties of a double quantum dot system in
the Kondo regime are studied theoretically by means of a two-impurity Anderson
Hamiltonian with inter-impurity hopping. The Hamiltonian, formulated in
slave-boson language, is solved by means of a generalization of the
non-crossing approximation (NCA) to the present problem. We provide benchmark
calculations of the predictions of the NCA for the linear and nonlinear
transport properties of coupled quantum dots in the Kondo regime. We give a
series of predictions that can be observed experimentally in linear and
nonlinear transport measurements through coupled quantum dots. Importantly, it
is demonstrated that measurements of the differential conductance , for the appropriate values of voltages and inter-dot tunneling
couplings, can give a direct observation of the coherent superposition between
the many-body Kondo states of each dot. This coherence can be also detected in
the linear transport through the system: the curve linear conductance vs
temperature is non-monotonic, with a maximum at a temperature
characterizing quantum coherence between both Kondo states.Comment: 20 pages, 17 figure
75th Anniversary of ‘Existence of Electromagnetic-Hydrodynamic Waves’
We have recently passed the 75th anniversary of one of the most important
results in solar and space physics: Hannes Alfv\'en's discovery of Alfv\'en
waves and the Alfv\'en speed. To celebrate the anniversary, this article
recounts some major episodes in the history of MHD waves. Following an
initially cool reception, Alfv\'en's ideas were propelled into the spotlight by
Fermi's work on cosmic rays, the new mystery of coronal heating and, as
scientific perception of interplanetary space shifted dramatically and the
space race started, detection of Alfv\'en waves in the solar wind. From then
on, interest in MHD waves boomed, laying the foundations for modern remote
observations of MHD waves in the Sun, coronal seismology and some of today's
leading theories of coronal heating and solar wind acceleration. In 1970,
Alfv\'en received the Nobel Prize for his work in MHD, including these
discoveries. The article concludes with some reflection about what the history
implies about the way we do science, especially the advantages and pitfalls of
idealised mathematical models.Comment: 10 pages, accepted by Solar Physic
Microwave sensor system for continuous monitoring of adhesive curing processes
A microwave sensor system has been developed for monitoring adhesive curing processes. The system provides continuous, real-time information about the curing progress without interfering with the reaction. An open-coaxial resonator is used as the sensor head, and measurements of its resonance frequency and quality factor are performed during cure to follow the reaction progress. Additionally, the system provides other interesting parameters such as reaction rate or cure time. The adhesive dielectric properties can also be computed off-line, which gives additional information about the process. The results given by the system correlate very well with conventional measurement techniques such as differential scanning calorimetry, combining accuracy and rate with simplicity and an affordable cost. © 2012 IOP Publishing Ltd.The authors thank Rut Benavente Martinez for her assistance in the DSC experiments. The contract of BG-B is financed by the Ministry of Science and Innovation of Spain, through the 'Torres Quevedo' Sub-programme, which is also co-financed by the European Social Fund (ESF). This work has been financed by the Ministry of Science and Innovation of Spain through the project MONIDIEL (TEC2008-04109).GarcÃa Baños, B.; Catalá Civera, JM.; Penaranda-Foix, FL.; Canós MarÃn, AJ.; Sahuquillo Navarro, O. (2012). Microwave sensor system for continuous monitoring of adhesive curing processes. Measurement Science and Technology. 23(3). https://doi.org/10.1088/0957-0233/23/3/035101S233Jost, M., & Sernek, M. (2008). Shear strength development of the phenol–formaldehyde adhesive bond during cure. Wood Science and Technology, 43(1-2), 153-166. doi:10.1007/s00226-008-0217-2Costa, M. L., Botelho, E. C., Paiva, J. M. F. de, & Rezende, M. C. (2005). Characterization of cure of carbon/epoxy prepreg used in aerospace field. Materials Research, 8(3), 317-322. doi:10.1590/s1516-14392005000300016Chen, J., & Hojjati, M. (2007). Microdielectric analysis and curing kinetics of an epoxy resin system. Polymer Engineering & Science, 47(2), 150-158. doi:10.1002/pen.20687Sernek, M., & Kamke, F. A. (2007). Application of dielectric analysis for monitoring the cure process of phenol formaldehyde adhesive. International Journal of Adhesion and Adhesives, 27(7), 562-567. doi:10.1016/j.ijadhadh.2006.10.004Núñez, L., Gómez-Barreiro, S., Gracia-Fernández, C. A., & Núñez, M. R. (2004). Use of the dielectric analysis to complement previous thermoanalytical studies on the system diglycidyl ether of bisphenol A/1,2 diamine cyclohexane. Polymer, 45(4), 1167-1175. doi:10.1016/j.polymer.2003.12.024Lefebvre, D. R., Han, J., Lipari, J. M., Long, M. A., McSwain, R. L., & Wells, H. C. (2006). Dielectric analysis for in-situ monitoring of gelatin renaturation and crosslinking. Journal of Applied Polymer Science, 101(5), 2765-2775. doi:10.1002/app.21631Cordovez, M., Li, Y., & Karbhari, V. M. (2004). Assessment of Dielectrometry for Characterization of Processing and Moisture Absorption in FRP Composites. Journal of Reinforced Plastics and Composites, 23(4), 445-456. doi:10.1177/0731684404031980Das, N. K., Voda, S. M., & Pozar, D. M. (1987). Two Methods for the Measurement of Substrate Dielectric Constant. IEEE Transactions on Microwave Theory and Techniques, 35(7), 636-642. doi:10.1109/tmtt.1987.1133722Fioretto, D., Livi, A., Rolla, P. A., Socino, G., & Verdini, L. (1994). The dynamics of poly(n-butyl acrylate) above the glass transition. Journal of Physics: Condensed Matter, 6(28), 5295-5302. doi:10.1088/0953-8984/6/28/007Givot, B. L., Krupka, J., & Belete, D. Y. (s. f.). Split post dielectric resonator technique for dielectric cure monitoring of structural adhesives. 13th International Conference on Microwaves, Radar and Wireless Communications. MIKON - 2000. Conference Proceedings (IEEE Cat. No.00EX428). doi:10.1109/mikon.2000.913931Canos, A. J., Catala-Civera, J. M., Penaranda-Foix, F. L., & Reyes-Davo, E. (2006). A novel technique for deembedding the unloaded resonance frequency from measurements of microwave cavities. IEEE Transactions on Microwave Theory and Techniques, 54(8), 3407-3416. doi:10.1109/tmtt.2006.877833Marks, R. B., & Williams, D. F. (1992). A general waveguide circuit theory. Journal of Research of the National Institute of Standards and Technology, 97(5), 533. doi:10.6028/jres.097.024Harrington, R. F. (1967). Matrix methods for field problems. Proceedings of the IEEE, 55(2), 136-149. doi:10.1109/proc.1967.5433Baker-Jarvis, J., Janezic, M. D., Domich, P. D., & Geyer, R. G. (1994). Analysis of an open-ended coaxial probe with lift-off for nondestructive testing. IEEE Transactions on Instrumentation and Measurement, 43(5), 711-718. doi:10.1109/19.328897Taylor, B. N. (1994). Guidelines for evaluating and expressing the uncertainty of NIST measurement results. doi:10.6028/nist.tn.1297Casalini, R., Corezzi, S., Livi, A., Levita, G., & Rolla, P. A. (1997). Dielectric parameters to monitor the crosslink of epoxy resins. Journal of Applied Polymer Science, 65(1), 17-25. doi:10.1002/(sici)1097-4628(19970705)65:13.0.co;2-tPreu, H., & Mengel, M. (2007). Experimental and theoretical study of a fast curing adhesive. International Journal of Adhesion and Adhesives, 27(4), 330-337. doi:10.1016/j.ijadhadh.2006.06.004Harper, D. P., Wolcott, M. P., & Rials, T. G. (2001). Evaluation of the cure kinetics of the wood/pMDI bondline. International Journal of Adhesion and Adhesives, 21(2), 137-144. doi:10.1016/s0143-7496(00)00045-2Garcia-Banos, B., Canos, A. J., Penaranda-Foix, F. L., & Catala-Civera, J. M. (2011). Noninvasive Monitoring of Polymer Curing Reactions by Dielectrometry. IEEE Sensors Journal, 11(1), 62-70. doi:10.1109/jsen.2010.2050475He, Y. (2001). DSC and DEA studies of underfill curing kinetics. Thermochimica Acta, 367-368, 101-106. doi:10.1016/s0040-6031(00)00654-7Núñez-Regueira, L., Gracia-Fernández, C. A., & Gómez-Barreiro, S. (2005). Use of rheology, dielectric analysis and differential scanning calorimetry for gel time determination of a thermoset. Polymer, 46(16), 5979-5985. doi:10.1016/j.polymer.2005.05.06
Perivascular Fat and the Microcirculation: Relevance to Insulin Resistance, Diabetes, and Cardiovascular Disease
Type 2 diabetes and its major risk factor, obesity, are a growing burden for public health. The mechanisms that connect obesity and its related disorders, such as insulin resistance, type 2 diabetes, and hypertension, are still undefined. Microvascular dysfunction may be a pathophysiologic link between insulin resistance and hypertension in obesity. Many studies have shown that adipose tissue-derived substances (adipokines) interact with (micro)vascular function and influence insulin sensitivity. In the past, research focused on adipokines from perivascular adipose tissue (PVAT). In this review, we focus on the interactions between adipokines, predominantly from PVAT, and microvascular function in relation to the development of insulin resistance, diabetes, and cardiovascular disease
Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity
Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation
Acetylcholine (ACh) has been shown to modulate neuronal differentiation during early development. Both muscarinic and nicotinic acetylcholine receptors (AChRs) regulate a wide variety of physiological responses, including apoptosis, cellular proliferation and neuronal differentiation. However, the intracellular mechanisms underlying these effects of AChR signaling are not fully understood. It is known that activation of AChRs increase cellular proliferation and neurogenesis and that regulation of intracellular calcium through AChRs may underlie the many functions of ACh. Intriguingly, activation of diverse signaling molecules such as Ras-mitogen-activated protein kinase, phosphatidylinositol 3-kinase-Akt, protein kinase C and c-Src is modulated by AChRs. Here we discuss the roles of ACh in neuronal differentiation, cell proliferation and apoptosis. We also discuss the pathways involved in these processes, as well as the effects of novel endogenous AChRs agonists and strategies to enhance neuronal-differentiation of stem and neural progenitor cells. Further understanding of the intracellular mechanisms underlying AChR signaling may provide insights for novel therapeutic strategies, as abnormal AChR activity is present in many diseases
- …