4,122 research outputs found

    Analysis of Accordion DNA Stretching Revealed by The Gold Cluster Ruler

    Full text link
    A promising new method for measuring intramolecular distances in solution uses small-angle X-ray scattering interference between gold nanocrystal labels (Mathew-Fenn et al, Science, 322, 446 (2008)). When applied to double stranded DNA, it revealed that the DNA length fluctuations are strikingly strong and correlated over at least 80 base pair steps. In other words, the DNA behaves as accordion bellows, with distant fragments stretching and shrinking concertedly. This hypothesis, however, disagrees with earlier experimental and computational observations. This Letter shows that the discrepancy can be rationalized by taking into account the cluster exclusion volume and assuming a moderate long-range repulsion between them. The long-range interaction can originate from an ion exclusion effect and cluster polarization in close proximity to the DNA surface.Comment: 9 pages, 4 figures, to appear in Phys. Rev.

    Aiming Higher: Results From a State Scorecard on Health System Performance, 2009

    Get PDF
    Ranks states on thirty-eight indicators of healthcare access, prevention and treatment, avoidable hospital use and costs, equity, and healthy lives. Examines trends, including eroding adult insurance coverage, poor care coordination, and rising costs

    Aiming Higher: Results From a State Scorecard on Health System Performance

    Get PDF
    Assesses state variation across key dimensions of health system performance -- access, quality, avoidable hospital use and costs, equity, and healthy lives -- and assigns overall state rankings as well as ranks on each dimension

    Replication of linkage at chromosome 20p13 and identification of suggestive sex-differential risk loci for autism spectrum disorder.

    Get PDF
    BackgroundAutism spectrum disorders (ASDs) are male-biased and genetically heterogeneous. While sequencing of sporadic cases has identified de novo risk variants, the heritable genetic contribution and mechanisms driving the male bias are less understood. Here, we aimed to identify familial and sex-differential risk loci in the largest available, uniformly ascertained, densely genotyped sample of multiplex ASD families from the Autism Genetics Resource Exchange (AGRE), and to compare results with earlier findings from AGRE.MethodsFrom a total sample of 1,008 multiplex families, we performed genome-wide, non-parametric linkage analysis in a discovery sample of 847 families, and separately on subsets of families with only male, affected children (male-only, MO) or with at least one female, affected child (female-containing, FC). Loci showing evidence for suggestive linkage (logarithm of odds ≥2.2) in this discovery sample, or in previous AGRE samples, were re-evaluated in an extension study utilizing all 1,008 available families. For regions with genome-wide significant linkage signal in the discovery stage, those families not included in the corresponding discovery sample were then evaluated for independent replication of linkage. Association testing of common single nucleotide polymorphisms (SNPs) was also performed within suggestive linkage regions.ResultsWe observed an independent replication of previously observed linkage at chromosome 20p13 (P < 0.01), while loci at 6q27 and 8q13.2 showed suggestive linkage in our extended sample. Suggestive sex-differential linkage was observed at 1p31.3 (MO), 8p21.2 (FC), and 8p12 (FC) in our discovery sample, and the MO signal at 1p31.3 was supported in our expanded sample. No sex-differential signals met replication criteria, and no common SNPs were significantly associated with ASD within any identified linkage regions.ConclusionsWith few exceptions, analyses of subsets of families from the AGRE cohort identify different risk loci, consistent with extreme locus heterogeneity in ASD. Large samples appear to yield more consistent results, and sex-stratified analyses facilitate the identification of sex-differential risk loci, suggesting that linkage analyses in large cohorts are useful for identifying heritable risk loci. Additional work, such as targeted re-sequencing, is needed to identify the specific variants within these loci that are responsible for increasing ASD risk

    Structural, mechanical and thermodynamic properties of a coarse-grained DNA model

    Full text link
    We explore in detail the structural, mechanical and thermodynamic properties of a coarse-grained model of DNA similar to that introduced in Thomas E. Ouldridge, Ard A. Louis, Jonathan P.K. Doye, Phys. Rev. Lett. 104 178101 (2010). Effective interactions are used to represent chain connectivity, excluded volume, base stacking and hydrogen bonding, naturally reproducing a range of DNA behaviour. We quantify the relation to experiment of the thermodynamics of single-stranded stacking, duplex hybridization and hairpin formation, as well as structural properties such as the persistence length of single strands and duplexes, and the torsional and stretching stiffness of double helices. We also explore the model's representation of more complex motifs involving dangling ends, bulged bases and internal loops, and the effect of stacking and fraying on the thermodynamics of the duplex formation transition.Comment: 25 pages, 16 figure

    Cloned mouse cells with natural killer function and cloned suppressor T cells express ultrastructural and biochemical features not shared by cloned inducer T cells.

    Get PDF
    We have examined the morphology, cytochemistry, and biochemistry of mouse leukocyte subsets by analyzing cloned leukocyte populations specialized to perform different immunologic functions. Cloned cells expressing high-affinity plasma membrane receptors for IgE and mediating natural killer (NK) lysis and cloned antigen-specific suppressor T cells contained prominent osmiophilic cytoplasmic granules similar by ultrastructure to those of mouse basophils. Both clones also incorporated 35SO4 into granule-associated sulfated glycosaminoglycans, expressed a characteristic ultrastructural pattern of nonspecific esterase activity, incorporated exogenous [3H]5-hydroxytryptamine, and contained cytoplasmic deposits of particulate glycogen. By contrast, cloned inducer T cells lacked cytoplasmic granules and glycogen, incorporated neither 35SO4 nor [3H]5-hydroxytryptamine, and differed from the other clones in pattern of nonspecific esterase activity. These findings establish that certain cloned cells with NK activity and cloned suppressor T cells express morphologic and biochemical characteristics heretofore associated with basophilic granulocytes. However, these clones differ in surface glycoprotein expression and immunologic function, and the full extent of the similarities and differences among these populations and basophils remains to be determined

    Transcriptomic analysis of autistic brain reveals convergent molecular pathology.

    Get PDF
    Autism spectrum disorder (ASD) is a common, highly heritable neurodevelopmental condition characterized by marked genetic heterogeneity. Thus, a fundamental question is whether autism represents an aetiologically heterogeneous disorder in which the myriad genetic or environmental risk factors perturb common underlying molecular pathways in the brain. Here, we demonstrate consistent differences in transcriptome organization between autistic and normal brain by gene co-expression network analysis. Remarkably, regional patterns of gene expression that typically distinguish frontal and temporal cortex are significantly attenuated in the ASD brain, suggesting abnormalities in cortical patterning. We further identify discrete modules of co-expressed genes associated with autism: a neuronal module enriched for known autism susceptibility genes, including the neuronal specific splicing factor A2BP1 (also known as FOX1), and a module enriched for immune genes and glial markers. Using high-throughput RNA sequencing we demonstrate dysregulated splicing of A2BP1-dependent alternative exons in the ASD brain. Moreover, using a published autism genome-wide association study (GWAS) data set, we show that the neuronal module is enriched for genetically associated variants, providing independent support for the causal involvement of these genes in autism. In contrast, the immune-glial module showed no enrichment for autism GWAS signals, indicating a non-genetic aetiology for this process. Collectively, our results provide strong evidence for convergent molecular abnormalities in ASD, and implicate transcriptional and splicing dysregulation as underlying mechanisms of neuronal dysfunction in this disorder

    Evaluation of positive G sub Z tolerance following simulated weightlessness (bedrest)

    Get PDF
    The magnitude of physiologic changes which are known to occur in human subjects exposed to varying levels of + G sub Z acceleration following bed rest simulation of weightlessness was studied. Bed rest effects were documented by fluid and electrolyte balance studies, maximal exercise capability, 70 deg passive tilt and lower body negative pressure tests and the ability to endure randomly prescribed acceleration profiles of +2G sub Z, +3G sub Z, and +4G sub Z. Six healthy male volunteers were studied during two weeks of bed rest after adequate control observations, followed by two weeks of recovery, followed by a second two-week period of bed rest at which time an Air Force cutaway anti-G suit was used to determine its effectiveness as a countermeasure for observed cardiovascular changes during acceleration. Results showed uniform and significant changes in all measured parameters as a consequence of bed rest including a reduced ability to tolerate +G sub Z acceleration. The use of anti-G suits significantly improved subject tolerance to all G exposures and returned measured parameters such as heart rate and blood pressure towards or to pre-bed-rest (control) values in four of the six cases
    • …
    corecore