2 research outputs found

    Distributed Intelligent MEMS: Progresses and Perspectives

    No full text
    International audienceMEMS research has until recently focused mainly on the engineering process, resulting in interesting products and a growing market. To fully realize the promise of MEMS, the next step is to add embedded intelligence. With embedded intelligence, the scalability of manufacturing will enable distributed MEMS systems consisting of thousands or millions of units which can work together to achieve a common goal. However, before such systems can become a reallity, we must come to grips with the challenge of scalability which will require paradigm-shifts both in hardware and software. Furthermore, the need for coordinated actuation, programming, communication and mobility management raises new challenges in both control and programming. The objective of this article is to report the progresses made by taking the example of two research projects and by giving the remaining challenges and the perspectives of distributed intelligent MEMS

    A Cilia-inspired Closed-loop Sensor-actuator Array

    Get PDF
    © 2018, Jilin University. Cilia are finger-like cell-surface organelles that are used by certain varieties of aquatic unicellular organisms for motility, sensing and object manipulation. Initiated by internal generators and external mechanical and chemical stimuli, coordinated undulations of cilia lead to the motion of a fluid surrounding the organism. This motion transports micro-particles towards an oral cavity and provides motile force. Inspired by the emergent properties of cilia possessed by the pond organism P. caudatum, we propose a novel smart surface with closed-loop control using sensor-actuators pairings that can manipulate objects. Each vibrating motor actuator is controlled by a localised microcontroller which utilises proximity sensor information to initiate actuation. The circuit boards are designed to be plug-and-play and are infinitely up-scalable and reconfigurable. The smart surface is capable of moving objects at a speed of 7.2 millimetres per second in forward or reverse direction. Further development of this platform will include more anatomically similar biomimetic cilia and control
    corecore