75 research outputs found

    Electronic and magnetic properties of GaMnAs: Annealing effects

    Full text link
    The effect of short-time and long-time annealing at 250C on the conductivity, hole density, and Curie temperature of GaMnAs single layers and GaMnAs/InGaMnAs heterostructures is studied by in-situ conductivity measurements as well as Raman and SQUID measurements before and after annealing. Whereas the conductivity monotonously increases with increasing annealing time, the hole density and the Curie temperature show a saturation after annealing for 30 minutes. The incorporation of thin InGaMnAs layers drastically enhances the Curie temperature of the GaMnAs layers.Comment: 4 pages, 6 figures, submitted to Physica

    Information Infrastructure for Cooperative Research in Neuroscience

    Get PDF
    The paper describes a framework for efficient sharing of knowledge between research groups, which have been working for several years without flaws. The obstacles in cooperation are connected primarily with the lack of platforms for effective exchange of experimental data, models, and algorithms. The solution to these problems is proposed by construction of the platform (EEG.pl) with the semantic aware search scheme between portals. The above approach implanted in the international cooperative projects like NEUROMATH may bring the significant progress in designing efficient methods for neuroscience research

    Spin interactions of interstitial Mn ions in ferromagnetic GaMnAs

    Full text link
    The recently reported Rutherford backscattering and particle-induced X-ray emission experiments have revealed that in low-temperature MBE grown GaMnAs a significant part of the incorporated Mn atoms occupies tetrahedral interstitial sites in the lattice. Here we study the magnetic properties of these interstitial ions. We show that they do not participate in the hole-induced ferromagnetism. Moreover, Mn interstitial double donors may form pairs with the nearest substitutional Mn acceptors - our calculations evidence that the spins in such pairs are antiferromagnetically coupled by the superexchange. We also show that for the Mn ion in the other, hexagonal, interstitial position (which seems to be the case in the GaMnBeAs samples) the p-d interactions with the holes, responsible for the ferromagnetism, are very much suppressed.Comment: 4 pages, 3 figures, submitted to PR

    Annealing-Dependent Magnetic Depth Profile in Ga[1-x]Mn[x]As

    Get PDF
    We have studied the depth-dependent magnetic and structural properties of as-grown and optimally annealed Ga[1-x]Mn[x]As films using polarized neutron reflectometry. In addition to increasing total magnetization, the annealing process was observed to produce a significantly more homogeneous distribution of the magnetization. This difference in the films is attributed to the redistribution of Mn at interstitial sites during the annealing process. Also, we have seen evidence of significant magnetization depletion at the surface of both as-grown and annealed films.Comment: 5 pages, 3 figure

    Growth and properties of ferromagnetic In(1-x)Mn(x)Sb alloys

    Full text link
    We discuss a new narrow-gap ferromagnetic (FM) semiconductor alloy, In(1-x)Mn(x)Sb, and its growth by low-temperature molecular-beam epitaxy. The magnetic properties were investigated by direct magnetization measurements, electrical transport, magnetic circular dichroism, and the magneto-optical Kerr effect. These data clearly indicate that In(1-x)Mn(x)Sb possesses all the attributes of a system with carrier-mediated FM interactions, including well-defined hysteresis loops, a cusp in the temperature dependence of the resistivity, strong negative magnetoresistance, and a large anomalous Hall effect. The Curie temperatures in samples investigated thus far range up to 8.5 K, which are consistent with a mean-field-theory simulation of the carrier-induced ferromagnetism based on the 8-band effective band-orbital method.Comment: Invited talk at 11th International Conference on Narrow Gap Semiconductors, Buffalo, New York, U.S.A., June 16 - 20, 200

    Controlling Curie temperature in (Ga,Ms)As through location of the Fermi level within the impurity band

    Full text link
    The ferromagnetic semiconductor (Ga,Mn)As has emerged as the most studied material for prototype applications in semiconductor spintronics. Because ferromagnetism in (Ga,Mn)As is hole-mediated, the nature of the hole states has direct and crucial bearing on its Curie temperature TC. It is vigorously debated, however, whether holes in (Ga,Mn)As reside in the valence band or in an impurity band. In this paper we combine results of channeling experiments, which measure the concentrations both of Mn ions and of holes relevant to the ferromagnetic order, with magnetization, transport, and magneto-optical data to address this issue. Taken together, these measurements provide strong evidence that it is the location of the Fermi level within the impurity band that determines TC through determining the degree of hole localization. This finding differs drastically from the often accepted view that TC is controlled by valence band holes, thus opening new avenues for achieving higher values of TC.Comment: 5 figures, supplementary material include

    Ferromagnetic semiconductors

    Full text link
    The current status and prospects of research on ferromagnetism in semiconductors are reviewed. The question of the origin of ferromagnetism in europium chalcogenides, chromium spinels and, particularly, in diluted magnetic semiconductors is addressed. The nature of electronic states derived from 3d of magnetic impurities is discussed in some details. Results of a quantitative comparison between experimental and theoretical results, notably for Mn-based III-V and II-VI compounds, are presented. This comparison demonstrates that the current theory of the exchange interactions mediated by holes in the valence band describes correctly the values of Curie temperatures T_C magnetic anisotropy, domain structure, and magnetic circular dichroism. On this basis, chemical trends are examined and show to lead to the prediction of semiconductor systems with T_C that may exceed room temperature, an expectation that are being confirmed by recent findings. Results for materials containing magnetic ions other than Mn are also presented emphasizing that the double exchange involving hoping through d states may operate in those systems.Comment: 18 pages, 8 figures; special issue of Semicon. Sci. Technol. on semiconductor spintronic

    Magnetic interactions in EuTe epitaxial layers and EuTe/PbTe superlattices

    Full text link
    The magnetic properties of antiferromagnetic (AFM) EuTe epitaxial layers and short period EuTe/PbTe superlattices (SLs), grown by molecular beam epitaxy on (111) BaF2_2 substrates, were studied by magnetization and neutron diffraction measurements. Considerable changes of the N\'eel temperature as a function of the EuTe layer thickness as well as of the strain state were found. A mean field model, taking into account the variation of the exchange constants with the strain-induced lattice distortions, and the nearest neighbor environment of a Eu atoms, was developed to explain the observed TNT_{\text N} changes in wide range of samples. Pronounced interlayer magnetic correlations have been revealed by neutron diffraction in EuTe/PbTe SLs with PbTe spacer thickness up to 60 \AA. The observed diffraction spectra were analyzed, in a kinematical approximation, assuming partial interlayer correlations characterized by an appropriate correlation parameter. The formation of interlayer correlations between the AFM EuTe layers across the nonmagnetic PbTe spacer was explained within a framework of a tight-binding model. In this model, the interlayer coupling stems from the dependence of the total electronic energy of the EuTe/PbTe SL on the spin configurations in adjacent EuTe layers. The influence of the EuTe and PbTe layer thickness fluctuations, inherent in the epitaxial growth process, on magnetic properties and interlayer coupling is discussed.Comment: 17 pages, 19 figures, accepted to PR

    Ferromagnetism in semiconductors and oxides: prospects from a ten years' perspective

    Full text link
    Over the last decade the search for compounds combining the resources of semiconductors and ferromagnets has evolved into an important field of materials science. This endeavour has been fuelled by continual demonstrations of remarkable low-temperature functionalities found for ferromagnetic structures of (Ga,Mn)As, p-(Cd,Mn)Te, and related compounds as well as by ample observations of ferromagnetic signatures at high temperatures in a number of non-metallic systems. In this paper, recent experimental and theoretical developments are reviewed emphasising that, from the one hand, they disentangle many controversies and puzzles accumulated over the last decade and, on the other, offer new research prospects.Comment: review, 13 pages, 8 figures, 109 reference

    Magnetic susceptibilities of diluted magnetic semiconductors and anomalous Hall-voltage noise

    Full text link
    The carrier spin and impurity spin densities in diluted magnetic semiconductors are considered using a semiclassical approach. Equations of motions for the spin densities and the carrier spin current density in the paramagnetic phase are derived, exhibiting their coupled diffusive dynamics. The dynamical spin susceptibilities are obtained from these equations. The theory holds for p-type and n-type semiconductors doped with magnetic ions of arbitrary spin quantum number. Spin-orbit coupling in the valence band is shown to lead to anisotropic spin diffusion and to a suppression of the Curie temperature in p-type materials. As an application we derive the Hall-voltage noise in the paramagnetic phase. This quantity is critically enhanced close to the Curie temperature due to the contribution from the anomalous Hall effect.Comment: 18 pages, 1 figure include
    corecore