14,798 research outputs found

    Wetting and Capillary Condensation in Symmetric Polymer Blends: A comparison between Monte Carlo Simulations and Self-Consistent Field Calculations

    Full text link
    We present a quantitative comparison between extensive Monte Carlo simulations and self-consistent field calculations on the phase diagram and wetting behavior of a symmetric, binary (AB) polymer blend confined into a film. The flat walls attract one component via a short range interaction. The critical point of the confined blend is shifted to lower temperatures and higher concentrations of the component with the lower surface free energy. The binodals close the the critical point are flattened compared to the bulk and exhibit a convex curvature at intermediate temperatures -- a signature of the wetting transition in the semi-infinite system. Investigating the spectrum of capillary fluctuation of the interface bound to the wall, we find evidence for a position dependence of the interfacial tension. This goes along with a distortion of the interfacial profile from its bulk shape. Using an extended ensemble in which the monomer-wall interaction is a stochastic variable, we accurately measure the difference between the surface energies of the components, and determine the location of the wetting transition via the Young equation. The Flory-Huggins parameter at which the strong first order wetting transition occurs is independent of chain length and grows quadratically with the integrated wall-monomer interaction strength. We estimate the location of the prewetting line. The prewetting manifests itself in a triple point in the phase diagram of very thick films and causes spinodal dewetting of ultrathin layers slightly above the wetting transition. We investigate the early stage of dewetting via dynamic Monte Carlo simulations.Comment: to appear in Macromolecule

    Phase diagram of polymer blends in confined geometry

    Get PDF
    Within self-consistent field theory we study the phase behavior of a symmetrical binary AB polymer blend confined into a thin film. The film surfaces interact with the monomers via short range potentials. One surface attracts the A component and the corresponding semi-infinite system exhibits a first order wetting transition. The surface interaction of the opposite surface is varied as to study the crossover from capillary condensation for symmetric surface fields to the interface localization/delocalization transition for antisymmetric surface fields. In the former case the phase diagram has a single critical point close to the bulk critical point. In the latter case the phase diagram exhibits two critical points which correspond to the prewetting critical points of the semi-infinite system. Only below a triple point there is a single two phase coexistence region. The crossover between these qualitatively different limiting behaviors occurs gradually, however, the critical temperature and the critical composition exhibit a non-monotonic dependence on the surface field. The dependence of the phase behavior for antisymmetric boundaries is studied as a function of the film thickness and the strength of the surface interactions. Upon reducing the film thickness or decreasing the strength of the surface interactions we can change the order of the interface localization/delocalization transition from first to second. The role of fluctuations is explored via Monte Carlo simulations of a coarse grained lattice model. Close to the (prewetting) critical points we observe 2D Ising critical behavior. At lower temperatures capillary waves of the AB interface lead to a pronounced dependence of the effective interface potential on the lateral system size.Comment: submitted to the Journal of Molecular Liquids and Condensed Matter Physic

    Domain Growth in Ising Systems with Quenched Disorder

    Get PDF
    We present results from extensive Monte Carlo (MC) simulations of domain growth in ferromagnets and binary mixtures with quenched disorder. These are modeled by the "random-bond Ising model" and the "dilute Ising model" with either nonconserved (Glauber) spin-flip kinetics or conserved (Kawasaki) spin-exchange kinetics. In all cases, our MC results are consistent with power-law growth with an exponent θ(T,ϵ)\theta (T,\epsilon) which depends on the quench temperature TT and the disorder amplitude ϵ\epsilon. Such exponents arise naturally when the coarsening domains are trapped by energy barriers which grow logarithmically with the domain size. Our MC results show excellent agreement with the predicted dependence of θ(T,ϵ)\theta (T,\epsilon).Comment: 11 pages, 15 figure

    Orientational correlations and the effect of spatial gradients in the equilibrium steady state of hard rods in 2D : A study using deposition-evaporation kinetics

    Get PDF
    Deposition and evaporation of infinitely thin hard rods (needles) is studied in two dimensions using Monte Carlo simulations. The ratio of deposition to evaporation rates controls the equilibrium density of rods, and increasing it leads to an entropy-driven transition to a nematic phase in which both static and dynamical orientational correlation functions decay as power laws, with exponents varying continuously with deposition-evaporation rate ratio. Our results for the onset of the power-law phase agree with those for a conserved number of rods. At a coarse-grained level, the dynamics of the non-conserved angle field is described by the Edwards-Wilkinson equation. Predicted relations between the exponents of the quadrupolar and octupolar correlation functions are borne out by our numerical results. We explore the effects of spatial inhomogeneity in the deposition-evaporation ratio by simulations, entropy-based arguments and a study of the new terms introduced in the free energy. The primary effect is that needles tend to align along the local spatial gradient of the ratio. A uniform gradient thus induces a uniformly aligned state, as does a gradient which varies randomly in magnitude and sign, but acts only in one direction. Random variations of deposition-evaporation rates in both directions induce frustration, resulting in a state with glassy characteristics.Comment: modified version, Accepted for publication in Physical Review

    Finite size scaling in Ising-like systems with quenched random fields: Evidence of hyperscaling violation

    Full text link
    In systems belonging to the universality class of the random field Ising model, the standard hyperscaling relation between critical exponents does not hold, but is replaced by a modified hyperscaling relation. As a result, standard formulations of finite size scaling near critical points break down. In this work, the consequences of modified hyperscaling are analyzed in detail. The most striking outcome is that the free energy cost \Delta F of interface formation at the critical point is no longer a universal constant, but instead increases as a power law with system size, \Delta F proportional to LθL^\theta, with θ\theta the violation of hyperscaling critical exponent, and L the linear extension of the system. This modified behavior facilitates a number of new numerical approaches that can be used to locate critical points in random field systems from finite size simulation data. We test and confirm the new approaches on two random field systems in three dimensions, namely the random field Ising model, and the demixing transition in the Widom-Rowlinson fluid with quenched obstacles

    Elastic constants from microscopic strain fluctuations

    Full text link
    Fluctuations of the instantaneous local Lagrangian strain ϵij(r,t)\epsilon_{ij}(\bf{r},t), measured with respect to a static ``reference'' lattice, are used to obtain accurate estimates of the elastic constants of model solids from atomistic computer simulations. The measured strains are systematically coarse- grained by averaging them within subsystems (of size LbL_b) of a system (of total size LL) in the canonical ensemble. Using a simple finite size scaling theory we predict the behaviour of the fluctuations as a function of Lb/LL_b/L and extract elastic constants of the system {\em in the thermodynamic limit} at nonzero temperature. Our method is simple to implement, efficient and general enough to be able to handle a wide class of model systems including those with singular potentials without any essential modification. We illustrate the technique by computing isothermal elastic constants of the ``soft'' and the hard disk triangular solids in two dimensions from molecular dynamics and Monte Carlo simulations. We compare our results with those from earlier simulations and density functional theory.Comment: 24 pages REVTEX, 10 .ps figures, version accepted for publication in Physical Review

    Molecular-Dynamics Simulation of a Glassy Polymer Melt: Incoherent Scattering Function

    Full text link
    We present simulation results for a model polymer melt, consisting of short, nonentangled chains, in the supercooled state. The analysis focuses on the monomer dynamics, which is monitored by the incoherent intermediate scattering function. The scattering function is recorded over six decades in time and for many different wave-vectors. The lowest temperatures studied are slightly above the critical temperature of mode-coupling theory (MCT), which was determined from a quantitative analysis of the beta- and alpha-relaxations. We find evidence for the space-time factorization theorem in the beta-relaxation regime, and for the time-temperature superposition principle in the alpha-regime, if the temperature is not too close to the critical temperature. The wave-vector dependence of the nonergodicity parameter, of the critical amplitude, and the alpha-relaxation time are in qualitative agreement with calculations for hard spheres. For wave-vectors larger than the maximum of the structure factor the alpha-relaxation time already agrees fairly well with the asymptotic MCT-prediction. The behavior of the relaxation time at small wave-vectors can be rationalized by the validity of the Gaussian approximation and the value of the Kohlrausch stretching exponent.Comment: 23 pages of REVTeX, 13 PostScript figures, submitted to Phys. Rev.
    corecore