255 research outputs found

    Multilayer defects nucleated by substrate pits: a comparison of actinic inspection and non-actinic inspection techniques

    Get PDF
    The production of defect-free mask blanks remains a key challenge for EUV lithography. Mask-blank inspection tools must be able to accurately detect all critical defects while simultaneously having the minimum possible false-positive detection rate. We have recently observed and here report the identification of bump-type buried substrate defects, that were below the detection limit of a non-actinic (i.e. non-EUV) in inspection tool. Presently, the occurrence inspection of pit-type defects, their printability, and their detectability with actinic techniques and non-actinic commercial tools, has become a significant concern. We believe that the most successful strategy for the development of effective non-actinic mask inspection tools will involve the careful cross-correlation with actinic inspection and lithographic printing. In this way, the true efficacy of prototype inspection tools now under development can be studied quantitatively against relevant benchmarks. To this end we have developed a dual-mode actinic mask inspection system capable of scanning mask blanks for defects (with simultaneous EUV bright-field and dark-field detection) and imaging those same defects with a zoneplate microscope that matches or exceeds the resolution of EUV steppers

    Performance of actinic EUVL mask imaging using a zoneplate microscope

    Get PDF
    The SEMATECH Berkeley Actinic Inspection Tool (AIT) is a dual-mode, scanning and imaging extreme-ultraviolet (EUV) microscope designed for pre-commercial EUV mask research. Dramatic improvements in image quality have been made by the replacement of several critical optical elements, and the introduction of scanning illumination to improve uniformity and contrast. We report high quality actinic EUV mask imaging with resolutions as low as 100-nm half-pitch, (20-nm, 5x wafer equivalent size), and an assessment of the imaging performance based on several metrics. Modulation transfer function (MTF) measurements show high contrast imaging for features sizes close to the diffraction-limit. An investigation of the illumination coherence shows that AIT imaging is much more coherent than previously anticipated, with {sigma} below 0.2. Flare measurements with several line-widths show a flare contribution on the order of 2-3% relative intensity in dark regions above the 1.3% absorber reflectivity on the test mask used for these experiments. Astigmatism coupled with focal plane tilt are the dominant aberrations we have observed. The AIT routinely records 250-350 high-quality images in numerous through-focus series per 8-hour shift. Typical exposure times range from 0.5 seconds during alignment, to approximately 20 seconds for high-resolution images

    Quantum Imaging with Incoherently Scattered Light from a Free-Electron Laser

    Full text link
    The advent of accelerator-driven free-electron lasers (FEL) has opened new avenues for high-resolution structure determination via diffraction methods that go far beyond conventional x-ray crystallography methods. These techniques rely on coherent scattering processes that require the maintenance of first-order coherence of the radiation field throughout the imaging procedure. Here we show that higher-order degrees of coherence, displayed in the intensity correlations of incoherently scattered x-rays from an FEL, can be used to image two-dimensional objects with a spatial resolution close to or even below the Abbe limit. This constitutes a new approach towards structure determination based on incoherent processes, including Compton scattering, fluorescence emission or wavefront distortions, generally considered detrimental for imaging applications. Our method is an extension of the landmark intensity correlation measurements of Hanbury Brown and Twiss to higher than second-order paving the way towards determination of structure and dynamics of matter in regimes where coherent imaging methods have intrinsic limitations
    • …
    corecore