340 research outputs found

    Religion and the Evolution of Democracy: A Revised Selectorate Model for the Arab Spring

    Get PDF
    2011 was a seminal year in the history of the Middle East and North Africa (MENA). Popularly referred to as the Arab Spring, the region has experienced a wave of revolutions and instability. It can be classified in three broad categories within 2011: Uprisings that have resulted in the overthrow of standing regimes, uprisings that have failed to overthrow standing regimes, and states that have not experienced popular revolts. In the first category Libya, Egypt, Yemen, and Tunisia have all experienced uprisings resulting in the respective departure of Muamar Gaddafi, Hosni Mubarak, Ali Abdullah Saleh, and Zine Al Abidine Ben Ali. In contrast Syria and Bahrain have experienced uprisings that have not resulted into the toppling of their regimes thus far. Finally, countries such as Saudi Arabia and Iran have experienced none of the instability observed in 2011 within the same time period. In tracking the evolution of selectorates, I identified the rise of actors within the newly developing coalitions whose Islamist preferences are unaccounted for in the standard Selectorate Model. As later explained in detail, Selectorate Theory is driven by the public-private goods argument. The theory states that a leader’s political survival is based on the mix of private payoffs he can provide to his selectorate and public goods provided to the general population. The once secular despots are either gone or are on the way out as evident by the removal of Hosni Mubarak, Zine Abidine Ben-Ali, Saddam Hussein, Muamar Gaddafi, Ali Abdullah Saleh, and the currently embattled Bashar Al- Assad. They are being replaced or have already been removed by governments that are led by Islamic Parties. Therefore, newly elected or appointed leaders must take into account the role of religion in their calculus for political survival in a way that they did not before. This begs the question: what about the regimes in my case studies that have not been toppled such as Saudi Arabia, Iran, and Bahrain? Although these are highly autocratic governments, the leaders of such governments have a legitimacy that is derived from implicit approval of their Islamist allies. This strengthens the argument that religion must be accounted for beyond the standard Selectorate Model rationale for political survival in MENA. In such context I provide a revised Selectorate Model explanation that accounts for the role of religion. I conclude that the standard Selectorate Theory is insufficient for MENA because it is does not account for the role of religion. By testing the coalitional distribution and evolution of selectorates, I developed a revised Selectorate Model that includes the role of religion along with the standard private payoffs – public goods argument. The role of religion is expressed by the presence of religious stakeholders in the agent based model such as clerics, shura councils or Islamic parties present in all selectorates in MENA. I tracked the selectorates through a series of predictions made throughout the course of 2011 using the Senturion agent based model. It serves as a powerful alternative to standard historical analysis and wisdom. I provide an explanation of why certain regimes fell while others remained relatively stable and why some governments experiencing similar instability remain using agent based modeling (ABM) in application to Selectorate Theory

    Effects of Gravitational Microlensing on P-Cygni Profiles of Type Ia Supernovae

    Full text link
    A brief description of the deformed spectra of microlensed SNe Ia is presented. We show that microlensing amplification can have significant effects on line profiles. The resonance-scattering code SYNOW is used to compute the intensity profile in the rest frame of the supernova. The observed (microlensed) spectral lines are predicted assuming a simple stellar-size deflector, and are compared to unlensed cases to show the effects microlensing by solar-size deflectors can have on spectral lines. We limit our work to spherically symmetric deflectors.Comment: 18 pages, 9 figures, references added, submitted to Ap

    Velocity independent constraints on spin-dependent DM-nucleon interactions from IceCube and PICO

    Full text link
    [EN] Adopting the Standard Halo Model (SHM) of an isotropic Maxwellian velocity distribution for dark matter (DM) particles in the Galaxy, the most stringent current constraints on their spin-dependent scattering cross-section with nucleons come from the IceCube neutrino observatory and the PICO-60 C3F8 superheated bubble chamber experiments. The former is sensitive to high energy neutrinos from the self-annihilation of DM particles captured in the Sun, while the latter looks for nuclear recoil events from DM scattering off nucleons. Although slower DM particles are more likely to be captured by the Sun, the faster ones are more likely to be detected by PICO. Recent N-body simulations suggest significant deviations from the SHM for the smooth halo component of the DM, while observations hint at a dominant fraction of the local DM being in substructures. We use the method of Ferrer et al. (JCAP 1509: 052, 2015) to exploit the complementarity between the two approaches and derive conservative constraints on DM-nucleon scattering. Our results constrain sigma SD less than or similar to 3x10-39cm2 (6x10-38cm2) at greater than or similar to 90% C.L. for a DM particle of mass 1 TeV annihilating into tau+tau- (bb) with a local density of rho DM=0.3GeV/cm3. The constraints scale inversely with rho DM and are independent of the DM velocity distribution.Aartsen, MG.; Ackermann, M.; Adams, J.; Aguilar, JA.; Ahlers, M.; Ahrens, M.; Alispach, C.... (2020). Velocity independent constraints on spin-dependent DM-nucleon interactions from IceCube and PICO. The European Physical Journal C. 80(9):1-8. https://doi.org/10.1140/epjc/s10052-020-8069-5S18809F. Ferrer, A. Ibarra, S. Wild, JCAP 1509(09), 052 (2015). arXiv:1506.03386 [hep-ph]S. van den Bergh, Publ. Astron. Soc. Pac. 111, 657 (1999). arXiv:astro-ph/9904251G. Bertone, D. Hooper, J. Silk, Phys. Rept. 405, 279 (2005). arXiv:hep-ph/0404175A.K. Drukier, K. Freese, D.N. Spergel, Phys. Rev. D 33, 3495 (1986)M. Kuhlen, N. Weiner, J. Diemand, P. Madau, B. Moore, D. Potter, J. Stadel, M. Zemp, JCAP 1002, 030 (2010). arXiv:0912.2358 [astro-ph.GA]M. Lisanti, L.E. Strigari, J.G. Wacker, R.H. Wechsler, Phys. Rev. D 83, 023519 (2011). arXiv:1010.4300 [astro-ph.CO]Y.Y. Mao, L.E. Strigari, R.H. Wechsler, H.Y. Wu, O. Hahn, Astrophys. J. 764, 35 (2013). arXiv:1210.2721 [astro-ph.CO]L. Necib, M. Lisanti, V. Belokurov, arXiv:1807.02519 [astro-ph.GA]N.W. Evans, C.A.J. O’Hare, C. McCabe, Phys. Rev. D 99(2), 023012 (2019). arXiv:1810.11468 [astro-ph.GA]M.G. Aartsen et al. [IceCube Collaboration], Eur. Phys. J. C 77, no. 3, 146 (2017) arXiv:1612.05949 [astro-ph.HE]C. Amole et al., [PICO Collaboration]. Phys. Rev. Lett. 118(25), 251301 (2017). arXiv:1702.07666 [astro-ph.CO]M.T. Frandsen, F. Kahlhoefer, C. McCabe, S. Sarkar, K. Schmidt-Hoberg, JCAP 1201, 024 (2012). arXiv:1111.0292 [hep-ph]K. Choi, C. Rott, Y. Itow, JCAP 1405, 049 (2014). arXiv:1312.0273 [astro-ph.HE]A. Achterberg et al., [IceCube Collaboration]. Astropart. Phys. 26, 155 (2006). arXiv:astro-ph/0604450R. Abbasi et al. [IceCube Collaboration], Nucl. Instrum. Meth. A 601, 294 (2009) arXiv:0810.4930 [physics.ins-det]M.G. Aartsen et al. [IceCube Collaboration], JINST 12, no. 03, P03012 (2017) arXiv:1612.05093 [astro-ph.IM]R. Abbasi et al., [IceCube Collaboration]. Astropart. Phys. 35, 615 (2012). arXiv:1109.6096 [astro-ph.IM]G.J. Feldman, R.D. Cousins, Phys. Rev. D 57, 3873 (1998). https://doi.org/10.1103/PhysRevD.57.3873. arXiv:physics/9711021 [physics.data-an]M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, no. 3, 030001 (2018)C. Amole et al. [PICO Collaboration], arXiv:1905.12522 [physics.ins-det]C. Amole et al. [PICO Collaboration], Phys. Rev. D 93, no. 5, 052014 (2016) arXiv:1510.07754 [hep-ex]E. Tollerud et al. [ERFA] Computational Science and Discovery, no 8, 1 (2015) https://doi.org/10.5281/zenodo.1021149J.N. Bahcall, R.K. Ulrich, Rev. Mod. Phys. 60, 297 (1988)T. Mumford et al. [SunPy Community] Computational Science and Discovery, no 8, 1 (2015) arXiv:1505.02563 [astro-ph]V. Gluscevic, M.I. Gresham, S.D. McDermott, A.H.G. Peter, K.M. Zurek, JCAP 1512(12), 057 (2015). arXiv:1506.04454 [hep-ph]A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, Y. Xu, ‘, JCAP 1302, 004 (2013). https://doi.org/10.1088/1475-7516/2013/02/004. arXiv:1203.3542 [hep-ph]A. Ibarra, A. Rappelt, JCAP 1708(08), 039 (2017). arXiv:1703.09168 [hep-ph
    • 

    corecore