15,954 research outputs found
Thermopower of gapped bilayer graphene
We calculate thermopower of clean and impure bilayer graphene systems.
Opening a band gap through the application of an external electric field is
shown to greatly enhance the thermopower of bilayer graphene, which is more
than four times that of the monolayer graphene and gapless bilayer graphene at
room temperature. The effect of scattering by dilute charged impurities is
discussed in terms of the self-consistent Born approximation. Temperature
dependence of the thermopower is also analyzed.Comment: 8 pages, 5 figures; An inconsistency in the definitions of Eq.(17)
and (18) in version 1 is found and correcte
Diplomats or Defendants? Defining the Future of Head-of-State Immunity
Fluorescence nanoscopy provides means to discernthe finer details of protein localization and interaction in cells by offeringan order of magnitude higher resolution than conventional optical imagingtechniques. However, these super resolution techniques put higher demands onthe optical system as well as on the fluorescent probes, making multicolorfluorescence nanoscopy a challenging task. Here we present a new and simpleprocedure which exploits the photostability and excitation spectra of dyes toincrease the number of simultaneous recordable targets in STED nanoscopy. Weuse this procedure to demonstrate four color STED imaging of platelets with ≤40 nm resolution and low crosstalk. Platelets can selectively store, sequesterand release a multitude of different proteins, and in a manner specific fordifferent physiological and disease states. By applying multicolor nanoscopy tostudy platelets, we can achieve spatial mapping of the protein organizationwith a high resolution, for multiple proteins at the same time and in the samecell. This provides a means to identify specific platelet activation states fordiagnostic purposes and to understand the underlying protein storage andrelease mechanisms. We studied the organization of the pro- and anti-angiogenicproteins VEGF and PF-4 together with fibrinogen and filamentous actin, andfound distinct features in their respective protein localization. Further,colocalization analysis revealed only minor overlap between the proteins VEGFand PF-4 indicating that they have separate storage and release mechanisms,corresponding well with their opposite rules as pro- and anti-angiogenicproteins, respectively.Updated from "Submitted" to "Published". QC 20140630</p
Elastic energy of proteins and the stages of protein folding
We propose a universal elastic energy for proteins, which depends only on the
radius of gyration and the residue number . It is constructed using
physical arguments based on the hydrophobic effect and hydrogen bonding.
Adjustable parameters are fitted to data from the computer simulation of the
folding of a set of proteins using the CSAW (conditioned self-avoiding walk)
model. The elastic energy gives rise to scaling relations of the form
in different regions. It shows three folding stages
characterized by the progression with exponents , which we
identify as the unfolded stage, pre-globule, and molten globule, respectively.
The pre-globule goes over to the molten globule via a break in behavior akin to
a first-order phase transition, which is initiated by a sudden acceleration of
hydrogen bonding
GaAs-based Self-Aligned Stripe Superluminescent Diodes Processed Normal to the Cleaved Facet
We demonstrate GaAs-based superluminescent diodes (SLDs) incorporating a window-like back facet in a self-aligned stripe. SLDs are realised with low spectral modulation depth (SMD) at high power spectral density, without application of anti-reflection coatings. Such application of a window-like facet reduces effective facet reflectivity in a broadband manner. We demonstrate 30mW output power in a narrow bandwidth with only 5% SMD, outline the design criteria for high power and low SMD, and describe the deviation from a linear dependence of SMD on output power as a result of Joule heating in SLDs under continuous wave current injection. Furthermore, SLDs processed normal to the facet demonstrate output powers as high as 20mW, offering improvements in beam quality, ease of packaging and use of real estate. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only
Differentially Private Model Selection with Penalized and Constrained Likelihood
In statistical disclosure control, the goal of data analysis is twofold: The
released information must provide accurate and useful statistics about the
underlying population of interest, while minimizing the potential for an
individual record to be identified. In recent years, the notion of differential
privacy has received much attention in theoretical computer science, machine
learning, and statistics. It provides a rigorous and strong notion of
protection for individuals' sensitive information. A fundamental question is
how to incorporate differential privacy into traditional statistical inference
procedures. In this paper we study model selection in multivariate linear
regression under the constraint of differential privacy. We show that model
selection procedures based on penalized least squares or likelihood can be made
differentially private by a combination of regularization and randomization,
and propose two algorithms to do so. We show that our private procedures are
consistent under essentially the same conditions as the corresponding
non-private procedures. We also find that under differential privacy, the
procedure becomes more sensitive to the tuning parameters. We illustrate and
evaluate our method using simulation studies and two real data examples
Adaptive community detection incorporating topology and content in social networks<sup>✰</sup>
© 2018 In social network analysis, community detection is a basic step to understand the structure and function of networks. Some conventional community detection methods may have limited performance because they merely focus on the networks’ topological structure. Besides topology, content information is another significant aspect of social networks. Although some state-of-the-art methods started to combine these two aspects of information for the sake of the improvement of community partitioning, they often assume that topology and content carry similar information. In fact, for some examples of social networks, the hidden characteristics of content may unexpectedly mismatch with topology. To better cope with such situations, we introduce a novel community detection method under the framework of non-negative matrix factorization (NMF). Our proposed method integrates topology as well as content of networks and has an adaptive parameter (with two variations) to effectively control the contribution of content with respect to the identified mismatch degree. Based on the disjoint community partition result, we also introduce an additional overlapping community discovery algorithm, so that our new method can meet the application requirements of both disjoint and overlapping community detection. The case study using real social networks shows that our new method can simultaneously obtain the community structures and their corresponding semantic description, which is helpful to understand the semantics of communities. Related performance evaluations on both artificial and real networks further indicate that our method outperforms some state-of-the-art methods while exhibiting more robust behavior when the mismatch between topology and content is observed
Effect of the Kondo correlation on thermopower in a Quantum Dot
In this paper we study the thermopower of a quantum dot connected to two
leads in the presence of Kondo correlation by employing a modified second-order
perturbation scheme at nonequilibrium. A simple scheme, Ng's ansatz [Phys. Rev.
Lett. {\bf 76}, 487 (1996)], is adopted to calculate nonequilibrium
distribution Green's function and its validity is further checked with regard
to the Onsager relation. Numerical results demonstrate that the sign of the
thermopower can be changed by tuning the energy level of the quantum dot,
leading to a oscillatory behavior with a suppressed magnitude due to the Kondo
effect. We also calculate the thermal conductance of the system, and find that
the Wiedemann-Franz law is obeyed at low temperature but violated with
increasing temperature, corresponding to emerging and quenching of the Kondo
effect.Comment: 6 pages, 4 figures; accepted for publication in J Phys.: Condensed
Matte
Evolution of population with sexual and asexual reproduction in changing environment
Using a lattice model based on Monte Carlo simulations, we study the role of
the reproduction pattern on the fate of an evolving population. Each individual
is under the selection pressure from the environment and random mutations. The
habitat ("climate") is changing periodically. Evolutions of populations
following two reproduction patterns are compared, asexual and sexual. We show,
via Monte Carlo simulations, that sexual reproduction by keeping more
diversified populations gives them better chances to adapt themselves to the
changing environment. However, in order to obtain a greater chance to mate, the
birth rate should be high. In the case of low birth rate and high mutation
probability there is a preference for the asexual reproduction.Comment: 11 pages including figs., for Int. J. Mod. Phys. C 15, issue 2 (2004
- …