108 research outputs found

    How Varroa Parasitism affects the immunological and nutritional status of the honey bee, Apis mellifera

    Get PDF
    We investigated the effect of the parasitic mite Varroa destructor on the immunological and nutritional condition of honey bees, Apis mellifera, from the perspective of the individual bee and the colony. Pupae, newly-emerged adults and foraging adults were sampled from honey bee colonies at one site in S. Texas, USA. Varroa infested bees displayed elevated titer of Deformed Wing Virus (DWV), suggestive of depressed capacity to limit viral replication. Expression of genes coding three anti-microbial peptides (defensin1, abaecin, hymenoptaecin) was either not significantly different between Varroa-infested and uninfested bees or was significantly elevated in Varroa-infested bees, varying with sampling date and bee developmental age. The effect of Varroa on nutritional indices of the bees was complex, with protein, triglyceride, glycogen and sugar levels strongly influenced by life-stage of the bee and individual colony. Protein content was depressed and free amino acid content elevated in Varroa-infested pupae, suggesting that protein synthesis, and consequently growth, may be limited in these insects. No simple relationship between the values of nutritional and immune-related indices was observed, and colony-scale effects were indicated by the reduced weight of pupae in colonies with high Varroa abundance, irrespective of whether the individual pupa bore Varroa

    Analytic results for Gaussian wave packets in four model systems: II. Autocorrelation functions

    Full text link
    The autocorrelation function, A(t), measures the overlap (in Hilbert space) of a time-dependent quantum mechanical wave function, psi(x,t), with its initial value, psi(x,0). It finds extensive use in the theoretical analysis and experimental measurement of such phenomena as quantum wave packet revivals. We evaluate explicit expressions for the autocorrelation function for time-dependent Gaussian solutions of the Schrodinger equation corresponding to the cases of a free particle, a particle undergoing uniform acceleration, a particle in a harmonic oscillator potential, and a system corresponding to an unstable equilibrium (the so-called `inverted' oscillator.) We emphasize the importance of momentum-space methods where such calculations are often more straightforwardly realized, as well as stressing their role in providing complementary information to results obtained using position-space wavefunctions.Comment: 18 pages, RevTeX, to appear in Found. Phys. Lett, Vol. 17, Dec. 200

    80-річчя академіка НАН України О. С. Космодаміанського

    Get PDF
    24 березня виповнилося вісімдесят років відомому вченому-механіку академіку НАН України Олександру Сергійовичу Космодаміанському

    Quantum Revivals in Periodically Driven Systems close to nonlinear resonance

    Full text link
    We calculate the quantum revival time for a wave-packet initially well localized in a one-dimensional potential in the presence of an external periodic modulating field. The dependence of the revival time on various parameters of the driven system is shown analytically. As an example of application of our approach, we compare the analytically obtained values of the revival time for various modulation strengths with the numerically computed ones in the case of a driven gravitational cavity. We show that they are in very good agreement.Comment: 14 pages, 1 figur

    Superrevivals in the quantum dynamics of a particle confined in a finite square well potential

    Get PDF
    We examine the revival features in wave packet dynamics of a particle confined in a finite square well potential. The possibility of tunneling modifies the revival pattern as compared to an infinite square well potential. We study the dependence of the revival times on the depth of the square well and predict the existence of superrevivals. The nature of these superrevivals is compared with similar features seen in the dynamics of wavepackets in an anharmonic oscillator potential.Comment: 8 pages in Latex two-column format with 5 figures (eps). To appear in Physical Review

    Immune pathways and defence mechanisms in honey bees Apis mellifera

    Get PDF
    Social insects are able to mount both group-level and individual defences against pathogens. Here we focus on individual defences, by presenting a genome-wide analysis of immunity in a social insect, the honey bee Apis mellifera. We present honey bee models for each of four signalling pathways associated with immunity, identifying plausible orthologues for nearly all predicted pathway members. When compared to the sequenced Drosophila and Anopheles genomes, honey bees possess roughly one-third as many genes in 17 gene families implicated in insect immunity. We suggest that an implied reduction in immune flexibility in bees reflects either the strength of social barriers to disease, or a tendency for bees to be attacked by a limited set of highly coevolved pathogens

    Atom Optics Quantum Pendulum

    Full text link
    We explain the dynamics of cold atoms, initially trapped and cooled in a magneto-optic trap, in a monochromatic stationary standing electromagnetic wave field. In the large detuning limit the system is modeled as a nonlinear quantum pendulum. We show that wave packet evolution of the quantum particle probes parametric regimes in the quantum pendulum which support classical period, quantum mechanical revival and super revival phenomena. Interestingly, complete reconstruction in particular parametric regime at quantum revival times is independent of potential height.Comment: 14 pages, 7 figure

    The Making of a Queen: TOR Pathway Is a Key Player in Diphenic Caste Development

    Get PDF
    Honey bees (Apis mellifera) provide a principal example of diphenic development. Excess feeding of female larvae results in queens (large reproductives). Moderate diet yields workers (small helpers). The signaling pathway that links provisioning to female developmental fate is not understood, yet we reasoned that it could include TOR (target of rapamycin), a nutrient- and energy-sensing kinase that controls organismal growth.Here, the role of Apis mellifera TOR (amTOR) in caste determination is examined by rapamycin/FK506 pharmacology and RNA interference (RNAi) gene knockdown. We show that in queen-destined larvae, the TOR inhibitor rapamycin induces the development of worker characters that are blocked by the antagonist FK506. Further, queen fate is associated with elevated activity of the Apis mellifera TOR encoding gene, amTOR, and amTOR gene knockdown blocks queen fate and results in individuals with worker morphology.A much-studied insect dimorphism, thereby, can be governed by the TOR pathway. Our results present the first evidence for a role of TOR in diphenic development, and suggest that adoption of this ancestral nutrient-sensing cascade is one evolutionary pathway for morphological caste differentiation in social insects
    corecore