3,648 research outputs found

    Two Gastropods from the Lower Cretaceous (Albian) of Coahuila, Mexico

    Full text link
    14-22http://deepblue.lib.umich.edu/bitstream/2027.42/48381/2/ID226.pd

    Chlamydophila (Chlamydia) pneumoniae promotes Ab 1-42 amyloid processing in Neuronal Cells: A Pathogenic Trigger for Alzheimer\u27s Disease

    Get PDF
    Background: Previously, our laboratory identified Chlamydophila (Chlamydia) pneumoniae (Cpn) in autopsied sporadic AD brains. Furthermore, we have developed a BALB/c mouse model that demonstrated infection-induced amyloid plaques similar to those found in AD, and demonstrated that Cpn infection of neuronal cells inhibited apoptotic pathways of cell death. Hypothesis: Our current studies address whether infection with Cpn in neuronal cells triggers abnormal cleavage of the beta amyloid precursor protein (bAPP) into Ab1-42, thereby contributing to amyloid plaque formation characteristic of the pathology identified in AD. Materials and Methods: Human neuroblastoma cells were infected with the respiratory strain AR39 Cpn in vitro, then amyloid processing was analyzed and quantitated using immunocytochemistry, Western blotting and ELISA assays. Results: Cpn was shown to infect neuronal cells and induce intracellular amyloid processing. Cpn infection yielded cytoplasmic labeling of Ab 1-42 that was increased relative to uninfected cells. The ELISA assay revealed that in neuronal cell lysates, Ab 1-42 in the infected cells was increased 3 to 16-fold over the uninfected cells, from 24 to 72hr post infection. Western blot analysis confirmed an increase in Ab 1-42 in the infected neuronal cell lysates. Conclusions: These data suggest that infection of neuronal cells with Chlamydophila (Chlamydia) pneumoniae alters the processing of bAPP, thereby producing Ab1-42. Therefore, these studies and previous research reported by our laboratory support the implication of Cpn as a pathogenic agent in perpetuating the hallmark amyloid plaque formations observed in AD. This concept holds major therapeutic considerations for future studies.https://digitalcommons.pcom.edu/posters/1004/thumbnail.jp

    Autophagy and apoptotic genes implicated in Alzheimer’s disease are modulated following infection of neuronal cells with Chlamydia pneumoniae

    Get PDF
    Background: The focus of the current studies was to determine the relationship between the molecular mechanisms interconnecting autophagy and apoptosis following Chlamydia pneumoniae infection in neuronal cells. Dysfunctions in apoptosis and autophagy have been implicated in the neurodegeneration associated with Alzheimer’s disease (AD). Autophagy in AD pathogenesis has been shown to play a role in amyloid processing through the endosomal-lysosomal system. Apoptosis may contribute to the neuronal cell loss observed in AD; however, there is limited evidence of the apoptotic process proceeding to terminal completion. Although Aβ1-42 has been shown to induce apoptosis in neurons and may be an early factor in AD, our previous investigations demonstrated that neurons infected with Chlamydia pneumoniae are resistant to apoptosis, and that Aβ1-42 is induced following this infection. Thus, these studies address infection as an initiator/trigger or inhibitor for the processes of autophagy and apoptosis observed in Alzheimer’s disease. Methods: SKNMC neuronal cells obtained from ATCC were infected with the AR39 strain of Chlamydia pneumoniae at an MOI=1 for 24, 48, and 72hrs and were analyzed using Real-time PCR arrays from SABiosciences specific for autophagy and apoptosis genetic markers. Results: Some major genes associated with apoptosis such as BID, DAPK1, TP53, TP73 were down regulated by 72hrs post-infection. Genes associated with the regulation of autophagic vacuole formation such as ATG3, ATG4B, ATG4C, ATG9A, ATG9B, ATG12, IRGM, and BECN1 were up-regulated within 72hrs post-infection. With regards to genes involved with co-regulation of autophagy and apoptosis, BNIP3 was significantly up-regulated within 48-72hrs post-infection. Of the genes linking autophagosomes to lysosomes, FAM176A was up-regulated throughout 24-72hrs post-infection. Conclusions: Modulation of autophagy and apoptosis genes occurs in neuronal cells at 24, 48, and 72hrs post- infection with Chlamydia pneumoniae. These genetic changes lead to dysfunction in these basic cellular processes; dysfunction in these processes has been shown to contribute to the neuropathology of late-onset Alzheimer’s disease. This work will allow future studies to further focus on the apoptotic and autophagic pathways to better understand how a pathogen such as Chlamydia pneumoniae plays a role in the development of late-onset Alzheimer’s disease.https://digitalcommons.pcom.edu/posters/1009/thumbnail.jp

    Analysis of autophagy and inflammasome regulation in neuronal cells and monocytes infected with Chlamydia pneumoniae: Implications for Alzheimer’s disease

    Get PDF
    Objectives: Our laboratory has been studying the role of infection with the obligate intracellular bacterium Chlamydia pneumoniae in sporadic late-onset Alzheimer disease (LOAD). This infection may be a trigger for the pathology observed in LOAD as a function of initiating changes in gene regulation following entry of the organism into the brain. As such, we are analyzing how this infection can promote changes in autophagy and inflammasome gene regulation as both have been shown to be altered in LOAD. Methods: Human SKNMC neuronal cells and THP1 monocytes were infected in vitro for 24-72 hrs with a laboratory strain of Chlamydia pneumoniae followed by RNA extraction, cDNA synthesis and analysis using Real-Time PCR microarrays for autophagy and inflammasome genes. Results: Gene expression for autophagy and inflammasome pathways was altered dramatically following infection. Genes encoding for co-regulation of autophagy, apoptosis, and the cell cycle that were significantly changed included: BCL2L1, FAS, PIK3CG, APP, and TP53. In addition, ATG3, and GABARAP, genes encoding for protein transport & ubiquitination and autophagic vacuole formation were significantly deregulated. Of the inflammasome genes, 4 NOD-like receptor genes were significantly up-regulated. IL-1beta, AIM2, CCL2, and CCL7 genes were all dramatically up-regulated in monocytes during the 72 hrs of infection. Conclusions: Our data suggest that Chlamydia pneumoniae-infected human SKNMC neuronal cells and THP1 monocytes exhibit specific changes in gene regulation for both autophagy and inflammasome pathways. These gene changes appear to correlate with pathologic changes previously reported in AD and further support the contention that infection with Chlamydia pneumoniae plays a role in LOAD pathogenesis.https://digitalcommons.pcom.edu/posters/1001/thumbnail.jp

    Daylight: What Makes a Difference

    Get PDF
    Light is necessary for vision; it enables us to sense and perceive our surroundings and in many direct and indirect ways, via eye and skin, affects our physiological and psychological health. The use of light in built environments has comfort, behavioural, economic and environmental consequences. Daylight has many particular benefits including excellent visual performance, permitting good eyesight, effective entrainment of the circadian system as well as a number of acute non-image forming effects and the important role of vitamin D production. Some human responses to daylight seem to be well defined whilst others require more research to be adequately understood. This paper presents an overview of current knowledge on how the characteristics of daylight play a role in fulfilling these and other functions often better than electric lighting as conventionally delivered

    Mesorectal radiotherapy for early stage rectal cancer: A novel target volume

    Get PDF
    With the introduction of population-based bowel cancer screening, rectal cancer is diagnosed at earlier stages, yet standard treatment still requires the same extensive surgery that is used for more advanced stages. Organ preserving treatment is rapidly developing and is subject of investigation in numerous clinical trials. The STAR-TREC trial is an international, multi-centre randomised trial investigating organ preservation using (chemo)radiotherapy. Patients with small mrT1-3bN0V0M0 tumours are randomized between three arms: standard TME, organ preservation with SCRT or with CRT. In this trial, the clinical target volume has been tailored to the early staged disease of the included patients. This mesorectal irradiation volume includes the mesorectum and pre-sacral lymph nodes at the level of the tumour, two centimetres below and cranially up to the S2-3 interspace level. In contrast to conventional irradiation volumes, the lateral lymph nodes and the nodes along the superior rectal artery are excluded. As a result, the dose to the bowel, bladder, anal sphincter and the neurovascular plexus in the lower pelvis is substantially decreased, especially when combined with modern irradiation techniques, such as dynamic arc therapy. These lower doses are expected to lead to decreasing acute and late toxicity and beneficial functional outcomes. The implementation of this novel target volume will be accompanied by an extensive quality assurance program in the STAR-TREC trial. We describe the rationale behind the novel, mesorectal only radiotherapy treatment used in the STAR-TREC trial specifically tailored for early stage disease, with the goal of organ preservation

    The predictive and prognostic potential of plasma telomerase reverse transcriptase (TERT) RNA in rectal cancer patients

    Get PDF
    Background: Preoperative chemoradiotherapy (CRT) followed by surgery is the standard care for locally advanced rectal cancer, but tumour response to CRT and disease outcome are variable. The current study aimed to investigate the effectiveness of plasma telomerase reverse transcriptase (TERT) levels in predicting tumour response and clinical outcome. Methods: 176 rectal cancer patients were included. Plasma samples were collected at baseline (before CRT\ubcT0), 2 weeks after CRT was initiated (T1), post-CRT and before surgery (T2), and 4\u20138 months after surgery (T3) time points. Plasma TERT mRNA levels and total cell-free RNA were determined using real-time PCR. Results: Plasma levels of TERT were significantly lower at T2 (Po0.0001) in responders than in non-responders. Post-CRT TERT levels and the differences between pre- and post-CRT TERT levels independently predicted tumour response, and the prediction model had an area under curve of 0.80 (95% confidence interval (CI) 0.73\u20130.87). Multiple analysis demonstrated that patients with detectable TERT levels at T2 and T3 time points had a risk of disease progression 2.13 (95% CI 1.10\u20134.11)-fold and 4.55 (95% CI 1.48\u201313.95)-fold higher, respectively, than those with undetectable plasma TERT levels. Conclusions: Plasma TERT levels are independent markers of tumour response and are prognostic of disease progression in rectal cancer patients who undergo neoadjuvant therapy

    Critical Exponents, Hyperscaling and Universal Amplitude Ratios for Two- and Three-Dimensional Self-Avoiding Walks

    Get PDF
    We make a high-precision Monte Carlo study of two- and three-dimensional self-avoiding walks (SAWs) of length up to 80000 steps, using the pivot algorithm and the Karp-Luby algorithm. We study the critical exponents ν\nu and 2Δ4γ2\Delta_4 -\gamma as well as several universal amplitude ratios; in particular, we make an extremely sensitive test of the hyperscaling relation dν=2Δ4γd\nu = 2\Delta_4 -\gamma. In two dimensions, we confirm the predicted exponent ν=3/4\nu = 3/4 and the hyperscaling relation; we estimate the universal ratios  / =0.14026±0.00007\ / \ = 0.14026 \pm 0.00007,  / =0.43961±0.00034\ / \ = 0.43961 \pm 0.00034 and Ψ=0.66296±0.00043\Psi^* = 0.66296 \pm 0.00043 (68\% confidence limits). In three dimensions, we estimate ν=0.5877±0.0006\nu = 0.5877 \pm 0.0006 with a correction-to-scaling exponent Δ1=0.56±0.03\Delta_1 = 0.56 \pm 0.03 (subjective 68\% confidence limits). This value for ν\nu agrees excellently with the field-theoretic renormalization-group prediction, but there is some discrepancy for Δ1\Delta_1. Earlier Monte Carlo estimates of ν\nu, which were  ⁣0.592\approx\! 0.592, are now seen to be biased by corrections to scaling. We estimate the universal ratios  / =0.1599±0.0002\ / \ = 0.1599 \pm 0.0002 and Ψ=0.2471±0.0003\Psi^* = 0.2471 \pm 0.0003; since Ψ>0\Psi^* > 0, hyperscaling holds. The approach to Ψ\Psi^* is from above, contrary to the prediction of the two-parameter renormalization-group theory. We critically reexamine this theory, and explain where the error lies.Comment: 87 pages including 12 figures, 1029558 bytes Postscript (NYU-TH-94/09/01
    corecore