15,575 research outputs found

    Understanding the fidelity effect when evaluating games with children

    Get PDF
    There have been a number of studies that have compared evaluation results from prototypes of different fidelities but very few of these are with children. This paper reports a comparative study of three prototypes ranging from low fidelity to high fidelity within the context of mobile games, using a between subject design with 37 participants aged 7 to 9. The children played a matching game on either an iPad, a paper prototype using screen shots of the actual game or a sketched version. Observational data was captured to establish the usability problems, and two tools from the Fun Toolkit were used to measure user experience. The results showed that there was little difference for user experience between the three prototypes and very few usability problems were unique to a specific prototype. The contribution of this paper is that children using low-fidelity prototypes can effectively evaluate games of this genre and style

    Post-Collision Interaction with Wannier electrons

    Full text link
    A theory of the Post-Collision Interaction (PCI) is developed for the case when an electron atom impact results in creation of two low-energy Wannier electrons and an ion excited into an autoionizing state. The following autoionization decay exposes the Wannier pair to the influence of PCI resulting in variation of the shape of the line in the autoionization spectrum. An explicit dependence of the autoionization profile on the wave function of the Wannier pair is found. PCI provides an opportunity to study this wave function for a wide area of distancesComment: 33 pages, Latex, IOP style, and 3 figures fig1.ps, fig2.ps, fig3.p

    Gapless Spin-Fluid Ground State in a Random Quantum Heisenberg Magnet

    Full text link
    We examine the spin-SS quantum Heisenberg magnet with Gaussian-random, infinite-range exchange interactions. The quantum-disordered phase is accessed by generalizing to SU(M)SU(M) symmetry and studying the large MM limit. For large SS the ground state is a spin-glass, while quantum fluctuations produce a spin-fluid state for small SS. The spin-fluid phase is found to be generically gapless - the average, zero temperature, local dynamic spin-susceptibility obeys \bar{\chi} (\omega ) \sim \log(1/|\omega|) + i (\pi/2) \mbox{sgn} (\omega) at low frequencies. This form is identical to the phenomenological `marginal' spectrum proposed by Varma {\em et. al.\/} for the doped cuprates.Comment: 13 pages, REVTEX, 2 figures available by request from [email protected]

    Magnetic phenomena at and near nu =1/2 and 1/4: theory, experiment and interpretation

    Full text link
    I show that the hamiltonian theory of Composite Fermions (CF) is capable of yielding a unified description in fair agreement with recent experiments on polarization P and relaxation rate 1/T_1 in quantum Hall states at filling nu = p/(2ps+1), at and near nu = 1/2 and 1/4, at zero and nonzero temperatures. I show how rotational invariance and two dimensionality can make the underlying interacting theory behave like a free one in a limited context.Comment: Latex 4 pages, 2 figure

    Optical, near-IR and XX-ray observations of SN 2015J and its host galaxy

    Get PDF
    SN 2015J was discovered on April 27th 2015 and is classified as a type IIn supernova. At first, it appeared to be an orphan SN candidate, i.e. without any clear identification of its host galaxy. Here, we present the analysis of the observations carried out {by the VLT 8-m class telescope with the FORS2 camera in the R band and the Magellan telescope (6.5 m) equipped with the IMACS Short-Camera (V and I filters) and the FourStar camera (Ks filter)}. We show that SN 2015J resides in what appears to be a very compact galaxy establishing a relation between the SN event and its natural host. We also present and discuss archival and new XX-ray data centred on SN 2015J. At the time of the supernova explosion, Swift/XRT observations were made and a weak X-ray source was detected at the location of SN 2015J. Almost one year later, the same source was unambiguously identified during serendipitous observations by Swift/XRT and XMMXMM-Newton, clearly showing an enhancement of the 0.3-10 keV band flux by a factor 30\simeq 30 with respect to the initial state. Swift/XRT observations show that the source is still active in the XX-rays at a level of 0.05\simeq 0.05 counts s1^{-1}. The unabsorbed X-ray luminosity derived from the {\it XMM}-Newton slew and SWIFT observations, Lx5×1041L_{x}\simeq 5\times10^{41} erg s1^{-1}, places SN 2015J among the brightest young supernovae in X-rays.Comment: The Astrophysical Journal, Volume 850, Number

    Bulk and edge correlations in the compressible half-filled quantum Hall state

    Full text link
    We study bulk and edge correlations in the compressible half-filled state, using a modified version of the plasma analogy. The corresponding plasma has anomalously weak screening properties, and as a consequence we find that the correlations along the edge do not decay algebraically as in the Laughlin (incompressible) case, while the bulk correlations decay in the same way. The results suggest that due to the strong coupling between charged modes on the edge and the neutral Fermions in the bulk, reflected by the weak screening in the plasma analogue, the (attractive) correlation hole is not well defined on the edge. Hence, the system there can be modeled as a free Fermi gas of {\em electrons} (with an appropriate boundary condition). We finally comment on a possible scenario, in which the Laughlin-like dynamical edge correlations may nevertheless be realized.Comment: package now includes the file epsfig.sty, needed to incorporate properly the 8 magnificent figure

    Gravitational wave bursts from cosmic (super)strings: Quantitative analysis and constraints

    Full text link
    We discuss data analysis techniques that can be used in the search for gravitational wave bursts from cosmic strings. When data from multiple interferometers are available, we describe consistency checks that can be used to greatly reduce the false alarm rates. We construct an expression for the rate of bursts for arbitrary cosmic string loop distributions and apply it to simple known solutions. The cosmology is solved exactly and includes the effects of a late-time acceleration. We find substantially lower burst rates than previous estimates suggest and explain the disagreement. Initial LIGO is unlikely to detect field theoretic cosmic strings with the usual loop sizes, though it may detect cosmic superstrings as well as cosmic strings and superstrings with non-standard loop sizes (which may be more realistic). In the absence of a detection, we show how to set upper limits based on the loudest event. Using Initial LIGO sensitivity curves, we show that these upper limits may result in interesting constraints on the parameter space of theories that lead to the production of cosmic strings.Comment: Replaced with version accepted for publication in PR

    Kondo Lattice without Nozieres Exhaustion Effect

    Full text link
    We discuss the properties of layered Anderson/Kondo lattices with metallic electrons confined in 2D xy planes and local spins in insulating layers forming chains in z direction. Each spin in this model possesses its own 2D Kondo cloud, so that the Nozieres' exhaustion problem does not occur. The excitation spectrum of the model is gapless both in charge and spin sectors. The disordered phases and possible experimental realizations of the model are briefly discussed.Comment: 4 pages, 3 figure

    The X-ray Properties of the Nearby Star-Forming Galaxy IC 342: The XMM-Newton View

    Full text link
    We present the X-ray properties of IC342 using XMM-Newton. Thirty-five sources are detected coincident with the disk of IC342 (more than tripling the number known), of which ~31 are likely to be intrinsic to IC342. This population shows a range of spectral properties and has an X-ray luminosity function slope and infrared luminosity comparable to that of starburst galaxies such as M82 and the Antennae, while its relative lack of extended X-ray emission is similar to the properties of quiescent spirals. We do detect long-term variability between this observation and the 1991 ROSAT and 1993/2000 ASCA observations for five sources. Notably, the second most luminous source IC342 X-2 is is found to be in its the lowest luminosity state observed for X-2 to date, although the slope of the spectrum is intermediate between the previously observed low/hard and high/soft states. IC342 X-1, on the other hand, is found to be in an identical state to that observed in 2000 with ASCA. Assuming X-1 is in an anomalous very high (VH) state, then either (1) X-1 has remained in this state between 2000 and 2002, and is therefore the longest duration VH-state binary ever observed, or (2) it was simply caught in a VH state by chance in both the 2000 ASCA and 2002 XMM-Newton observations. We have also confirmed the ROSAT HRI result that the nucleus of IC342 is made up of both point-like and extended emission. The relative fluxes of the two spectral components suggest that the nucleus is complex, with a soft extended component contributing approximately half of the total luminosity. (Abridged)Comment: AJ in press (December 2003), 9 pages, 7 figures, 2 tables, emulateapj.cls use
    corecore