13,172 research outputs found

    A hybrid approach to space power control

    Get PDF
    Conventional control systems have traditionally been utilized for space-based power designs. However, the use of expert systems is becoming important for NASA applications. Rocketdyne has been pursuing the development of expert systems to aid and enhance control designs of space-based power systems. The need for integrated expert systems is vital for the development of autonomous power systems

    Vortex crystals

    Get PDF
    Vortex crystals is one name in use for the subject of vortex patterns that move without change of shape or size. Most of what is known pertains to the case of arrays of parallel line vortices moving so as to produce an essentially two-dimensional flow. The possible patterns of points indicating the intersections of these vortices with a plane perpendicular to them have been studied for almost 150 years. Analog experiments have been devised, and experiments with vortices in a variety of fluids have been performed. Some of the states observed are understood analytically. Others have been found computationally to high precision. Our degree of understanding of these patterns varies considerably. Surprising connections to the zeros of 'special functions' arising in classical mathematical physics have been revealed. Vortex motion on two-dimensional manifolds, such as the sphere, the cylinder (periodic strip) and torus (periodic parallelogram) has also been studied, because of the potential applications, and some results are available regarding the problem of vortex crystals in such geometries. Although a large amount of material is available for review, some results are reported here for the first time. The subject seems pregnant with possibilities for further development.published or submitted for publicationis peer reviewe

    Potentials for which the Radial Schr\"odinger Equation can be solved

    Full text link
    In a previous paper1^1, submitted to Journal of Physics A -- we presented an infinite class of potentials for which the radial Schr\"odinger equation at zero energy can be solved explicitely. For part of them, the angular momentum must be zero, but for the other part (also infinite), one can have any angular momentum. In the present paper, we study a simple subclass (also infinite) of the whole class for which the solution of the Schr\"odinger equation is simpler than in the general case. This subclass is obtained by combining another approach together with the general approach of the previous paper. Once this is achieved, one can then see that one can in fact combine the two approaches in full generality, and obtain a much larger class of potentials than the class found in ref. 1^1 We mention here that our results are explicit, and when exhibited, one can check in a straightforward manner their validity

    Representations for Three-Body T-Matrix on Unphysical Sheets: Proofs

    Get PDF
    A proof is given for the explicit representations which have been formulated in the author's previous work (nucl-th/9505028) for the Faddeev components of three-body T-matrix continued analytically on unphysical sheets of the energy Riemann surface. Also, the analogous representations for analytical continuation of the three-body scattering matrices and resolvent are proved. An algorithm to search for the three-body resonances on the base of the Faddeev differential equations is discussed.Comment: 98 Kb; LaTeX; Journal-ref was added (the title changed in the journal

    Representations for Three-Body T-Matrix on Unphysical Sheets

    Get PDF
    Explicit representations are formulated for the Faddeev components of three-body T-matrix continued analytically on unphysical sheets of the energy Riemann surface. According to the representations, the T-matrix on unphysical sheets is obviously expressed in terms of its components taken on the physical sheet only. The representations for T-matrix are used then to construct similar representations for analytical continuation of three-body scattering matrices and resolvent. Domains on unphysical sheets are described where the representations obtained can be applied.Comment: 123 Kb; LaTeX; Journal-ref was added (the title changed in the journal

    The rotation and Galactic kinematics of mid M dwarfs in the Solar Neighborhood

    Full text link
    Rotation is a directly-observable stellar property, and drives magnetic field generation and activity through a magnetic dynamo. Main sequence stars with masses below approximately 0.35Msun (mid-to-late M dwarfs) are fully-convective, and are expected to have a different type of dynamo mechanism than solar-type stars. Measurements of their rotation rates provide insights into these mechanisms, but few rotation periods are available for these stars at field ages. Using photometry from the MEarth transit survey, we measure rotation periods for 387 nearby, mid-to-late M dwarfs in the Northern hemisphere, finding periods from 0.1 to 140 days. The typical detected rotator has stable, sinusoidal photometric modulations at a semi-amplitude of 0.5 to 1%. We find no period-amplitude relation for stars below 0.25Msun and an anti-correlation between period and amplitude for higher-mass M dwarfs. We highlight the existence of older, slowly-rotating stars without H{\alpha} emission that nevertheless have strong photometric variability. The Galactic kinematics of our sample is consistent with the local population of G and K dwarfs, and rotators have metallicities characteristic of the Solar Neighborhood. We use the W space velocities and established age-velocity relations to estimate that stars with P<10 days are on average <2 Gyrs, and that those with P>70 days are about 5 Gyrs. The period distribution is mass dependent: as the mass decreases, the slowest rotators at a given mass have longer periods, and the fastest rotators have shorter periods. We find a lack of stars with intermediate rotation periods. [Abridged]Comment: Accepted to ApJ. Machine readable tables and additional figures are available in the published article or on reques

    Viscous evolution of point vortex equilibria: The collinear state

    Full text link
    When point vortex equilibria of the 2D Euler equations are used as initial conditions for the corre- sponding Navier-Stokes equations (viscous), typically an interesting dynamical process unfolds at short and intermediate time scales, before the long time single peaked, self-similar Oseen vortex state dom- inates. In this paper, we describe the viscous evolution of a collinear three vortex structure that cor- responds to an inviscid point vortex fixed equilibrium. Using a multi-Gaussian 'core-growth' type of model, we show that the system immediately begins to rotate unsteadily, a mechanism we attribute to a 'viscously induced' instability. We then examine in detail the qualitative and quantitative evolution of the system as it evolves toward the long-time asymptotic Lamb-Oseen state, showing the sequence of topological bifurcations that occur both in a fixed reference frame, and in an appropriately chosen rotating reference frame. The evolution of passive particles in this viscously evolving flow is shown and interpreted in relation to these evolving streamline patterns.Comment: 17 pages, 15 figure

    A Search for Additional Bodies in the GJ 1132 Planetary System from 21 Ground-based Transits and a 100 Hour Spitzer Campaign

    Get PDF
    We present the results of a search for additional bodies in the GJ 1132 system through two methods: photometric transits and transit timing variations of the known planet. We collected 21 transit observations of GJ 1132b with the MEarth-South array since 2015. We obtained 100 near-continuous hours of observations with the SpitzerSpitzer Space Telescope, including two transits of GJ 1132b and spanning 60\% of the orbital phase of the maximum period at which bodies coplanar with GJ 1132b would pass in front of the star. We exclude transits of additional Mars-sized bodies, such as a second planet or a moon, with a confidence of 99.7\%. When we combine the mass estimate of the star (obtained from its parallax and apparent KsK_s band magnitude) with the stellar density inferred from our high-cadence SpitzerSpitzer light curve (assuming zero eccentricity), we measure the stellar radius of GJ 1132 to be 0.21050.0085+0.0102R0.2105^{+0.0102}_{-0.0085} R_\odot, and we refine the radius measurement of GJ 1132b to 1.130±0.056R1.130 \pm 0.056 R_\oplus. Combined with HARPS RV measurements, we determine the density of GJ 1132b to be 6.2±2.06.2 \pm 2.0\ g cm3^{-3}, with the mass determination dominating this uncertainty. We refine the ephemeris of the system and find no evidence for transit timing variations, which would be expected if there was a second planet near an orbital resonance with GJ 1132b.Comment: 29 pages, 4 Tables, 8 Figures, Submitted to ApJ. Comments welcom

    Completed cohomology of Shimura curves and a p-adic Jacquet-Langlands correspondence

    Full text link
    We study indefinite quaternion algebras over totally real fields F, and give an example of a cohomological construction of p-adic Jacquet-Langlands functoriality using completed cohomology. We also study the (tame) levels of p-adic automorphic forms on these quaternion algebras and give an analogue of Mazur's `level lowering' principle.Comment: Updated version. Contains some minor corrections compared to the published versio

    A study of Feshbach resonances and the unitary limit in a model of strongly correlated nucleons

    Full text link
    A model of strongly interacting and correlated hadrons is developed. The interaction used contains a long range attraction and short range repulsive hard core. Using this interaction and various limiting situations of it, a study of the effect of bound states and Feshbach resonances is given. The limiting situations are a pure square well interaction, a delta-shell potential and a pure hard core potential. The limit of a pure hard core potential are compared with results for a spinless Bose and Fermi gas. The limit of many partial waves for a pure hard core interaction is also considered and result in expressions involving the hard core volume. This feature arises from a scaling relation similar to that for hard sphere scattering with diffractive corrections. The role of underlying isospin symmetries associated with the strong interaction of protons and neutrons in this two component model is investigated. Properties are studied with varying proton fraction. An analytic expression for the Beth Uhlenbeck continuum integral is developed which closely approximates exact results based on the potential model considered. An analysis of features associated with a unitary limit is given. In the unitary limit of very large scattering length, the ratio of effective range to thermal wavelength appears as a limiting scale. Thermodynamic quantities such as the entropy and compressibility are also developed. The effective range corrections to the entropy vary as the cube of this ratio for low temperatures and are therefore considerably reduced compared to the corrections to the interaction energy which varies linearly with this ratio. Effective range corrections to the compressibility are also linear in the ratio.Comment: 39 pages, 15 figures, 2 table
    corecore