1,566 research outputs found
Coherence-controlled transparency and far-from-degenerate parametric gain in a strongly-absorbing Doppler-broadened medium
An inversionless gain of anti-Stokes radiation above the oscillation
threshold in an optically-dense far-from-degenerate double-Lambda
Doppler-broadened medium accompanied by Stokes gain is predicted. The outcomes
are illustrated with numerical simulations applied to sodium dimer vapor.
Optical switching from absorption to gain via transparency controlled by a
small variation of the medium and of the driving radiation parameters which are
at a level less than one photon per molecule is shown. Related video/audio
clips see in: A.K. Popov, S.A. Myslivets, and T.F. George, Optics Express Vol.
7, No 3, 148 (2000)(http://epubs.osa.org/oearchive/source/22947.htm) or
download: http://kirensky.krasn.ru/popov/opa/opa.htmComment: 4 pages, 3 eps figures, to be published in Optics Letters, vol.25, No
18 (2000), minor style changes and reference correctio
Collective Phase Chaos in the Dynamics of Interacting Oscillator Ensembles
We study chaotic behavior of order parameters in two coupled ensembles of
self-sustained oscillators. Coupling within each of these ensembles is switched
on and off alternately, while the mutual interaction between these two
subsystems is arranged through quadratic nonlinear coupling. We show
numerically that in the course of alternating Kuramoto transitions to synchrony
and back to asynchrony, the exchange of excitations between two subpopulations
proceeds in such a way that their collective phases are governed by an
expanding circle map similar to the Bernoulli map. We perform the Lyapunov
analysis of the dynamics and discuss finite-size effects.Comment: 19 page
Opto-mechanical transducers for long-distance quantum communication
We describe a new scheme to interconvert stationary and photonic qubits which
is based on indirect qubit-light interactions mediated by a mechanical
resonator. This approach does not rely on the specific optical response of the
qubit and thereby enables optical quantum interfaces for a wide range of solid
state spin and charge based systems. We discuss the implementation of quantum
state transfer protocols between distant nodes of a large scale network and
evaluate the effect of the main noise sources on the resulting state transfer
fidelities. For the specific examples of electronic spin qubits and
superconducting charge qubits we show that high fidelity quantum communication
protocols can be implemented under realistic experimental conditions.Comment: Version as accepted by PR
Peculiarities of gamma-quanta distribution at 20 TeV energy
The angular distribution of protons from the fragmentational region is analyzed. The gamma-quanta families are generated in a dense target by cosmic ray particles at 20 Tev energy. Families were found which had dense groups (spikes) of gamma-quanta where the rapidity/density is 3 times more than the average value determined for all registered families. The experimental data is compared with the results of artificial families simulation
Two-fluid and magnetohydrodynamic modelling of magnetic reconnection in the MAST spherical tokamak and the solar corona
Twisted magnetic flux ropes are ubiquitous in space and laboratory plasmas,
and the merging of such flux ropes through magnetic reconnection is an
important mechanism for restructuring magnetic fields and releasing free
magnetic energy. The merging-compression scenario is one possible start up
scheme for spherical tokamaks, which has been used on the Mega Amp Spherical
Tokamak MAST. Two current-carrying plasma rings, or flux ropes, approach each
other through the mutual attraction of their like currents, and merge, through
magnetic reconnection, into a single plasma torus, with substantial plasma
heating. 2D resistive MHD and Hall MHD simulations of this process are
reported, and new results for the temperature distribution of ions and
electrons are presented. A model of the based on relaxation theory is also
described, which is now extended to tight aspect ratio geometry. This model
allows prediction of the final merged state and the heating. The implications
of the relaxation model for heating of the solar corona are also discussed, and
a model of the merger of two or more twisted coronal flux ropes is presented,
allowing for different senses of twist
Parametric Self-Oscillation via Resonantly Enhanced Multiwave Mixing
We demonstrate an efficient nonlinear process in which Stokes and anti-Stokes
components are generated spontaneously in a Raman-like, near resonant media
driven by low power counter-propagating fields. Oscillation of this kind does
not require optical cavity and can be viewed as a spontaneous formation of
atomic coherence grating
Quantum Spin Lenses in Atomic Arrays
We propose and discuss `quantum spin lenses', where quantum states of
delocalized spin excitations in an atomic medium are `focused' in space in a
coherent quantum process down to (essentially) single atoms. These can be
employed to create controlled interactions in a quantum light-matter interface,
where photonic qubits stored in an atomic ensemble are mapped to a quantum
register represented by single atoms. We propose Hamiltonians for quantum spin
lenses as inhomogeneous spin models on lattices, which can be realized with
Rydberg atoms in 1D, 2D and 3D, and with strings of trapped ions. We discuss
both linear and non-linear quantum spin lenses: in a non-linear lens, repulsive
spin-spin interactions lead to focusing dynamics conditional to the number of
spin excitations. This allows the mapping of quantum superpositions of
delocalized spin excitations to superpositions of spatial spin patterns, which
can be addressed by light fields and manipulated. Finally, we propose
multifocal quantum spin lenses as a way to generate and distribute entanglement
between distant atoms in an atomic lattice array.Comment: 13 pages, 9 figure
Raman Adiabatic Transfer of Optical States
We analyze electromagnetically induced transparency and light storage in an
ensemble of atoms with multiple excited levels (multi-Lambda configuration)
which are coupled to one of the ground states by quantized signal fields and to
the other one via classical control fields. We present a basis transformation
of atomic and optical states which reduces the analysis of the system to that
of EIT in a regular 3-level configuration. We demonstrate the existence of dark
state polaritons and propose a protocol to transfer quantum information from
one optical mode to another by an adiabatic control of the control fields
- …