582 research outputs found

    An integrated analysis and comparison of serum, saliva and sebum for COVID-19 metabolomics.

    Get PDF
    The majority of metabolomics studies to date have utilised blood serum or plasma, biofluids that do not necessarily address the full range of patient pathologies. Here, correlations between serum metabolites, salivary metabolites and sebum lipids are studied for the first time. 83 COVID-19 positive and negative hospitalised participants provided blood serum alongside saliva and sebum samples for analysis by liquid chromatography mass spectrometry. Widespread alterations to serum-sebum lipid relationships were observed in COVID-19 positive participants versus negative controls. There was also a marked correlation between sebum lipids and the immunostimulatory hormone dehydroepiandrosterone sulphate in the COVID-19 positive cohort. The biofluids analysed herein were also compared in terms of their ability to differentiate COVID-19 positive participants from controls; serum performed best by multivariate analysis (sensitivity and specificity of 0.97), with the dominant changes in triglyceride and bile acid levels, concordant with other studies identifying dyslipidemia as a hallmark of COVID-19 infection. Sebum performed well (sensitivity 0.92; specificity 0.84), with saliva performing worst (sensitivity 0.78; specificity 0.83). These findings show that alterations to skin lipid profiles coincide with dyslipidaemia in serum. The work also signposts the potential for integrated biofluid analyses to provide insight into the whole-body atlas of pathophysiological conditions

    Modeling the Effects of Late Cycle Oxygen Enrichment on Diesel Engine Combustion and Emissions

    Full text link
    A multidimensional simulation of Auxiliary Gas Injection (AGI) for late cycle oxygen enrichment was exercised to assess the merits of AGI for reducing the emissions of soot from heavy duty diesel engines while not adversely affecting the NO{sub x} emissions of the engine. Here, AGI is the controlled enhancement of mixing within the diesel engine combustion chamber by high speed jets of air or another gas. The engine simulated was a Caterpillar 3401 engine. For a particular operating condition of this engine, the simulated soot emissions of the engine were reduced by 80% while not significantly affecting the engine-out NO{sub x} emissions compared to the engine operating without AGI. The effects of AGI duration, timing, and orientation are studied to confirm the window of opportunity for realizing lower engine-out soot while not increasing engine out NO{sub x} through controlled enhancement of in-cylinder mixing. These studies have shown that this window occurs during the late combustion cycle, from 20 to 60 crank angle degrees after top-dead-center. During this time, the combustion chamber temperatures are sufficiently high that soot oxidation increases in response in increased mixing, but the temperature is low enough that NO{sub x} reactions are quenched. The effect of the oxygen composition of the injected air is studied for the range of compositions between 21% and 30% oxygen by volume. This is the range of oxygen enrichment that is practical to produce from an air separation membrane. Simulations showed that this level of oxygen enrichment is insufficient to provide an additional benefit by either increasing the level of soot oxidation or prolonging the window of opportunity for increasing soot oxidation through enhanced mixing

    Prenatal muscle development in a mouse model for the secondary dystroglycanopathies

    Get PDF
    The defective glycosylation of α-dystroglycan is associated with a group of muscular dystrophies that are collectively referred to as the secondary dystroglycanopathies. Mutations in the gene encoding fukutin-related protein (FKRP) are one of the most common causes of secondary dystroglycanopathy in the UK and are associated with a wide spectrum of disease. Whilst central nervous system involvement has a prenatal onset, no studies have addressed prenatal muscle development in any of the mouse models for this group of diseases. In view of the pivotal role of α-dystroglycan in early basement membrane formation, we sought to determine if the muscle formation was altered in a mouse model of FKRP-related dystrophy

    The impact of pre‐operative intravenous iron on quality of life after colorectal cancer surgery: outcomes from the intravenous iron in colorectal cancer‐associated anaemia (IVICA) trial

    Get PDF
    Anaemia is associated with a reduction in quality of life, and is common in patients with colorectal cancer . Werecently reported thefindings of the intravenous iron in colorectal cancer-associated anaemia (IVICA) trialcomparing haemoglobin levels and transfusion requirements following intravenous or oral iron replacement inanaemic colorectal cancer patients undergoing elective surgery. In this follow-up study, we compared theefficacy of intravenous and oral iron at improving quality of life in this patient group. We conducted amulticentre, open-label randomised controlled trial. Anaemic colorectal cancer patients were randomlyallocated at least two weeks pre-operatively, to receive either oral (ferrous sulphate) or intravenous (ferriccarboxymaltose) iron. We assessed haemoglobin and quality of life scores at recruitment, immediately beforesurgery and at outpatient review approximately three months postoperatively, using the Short Form 36,EuroQoL 5-dimension 5-level and Functional Assessment of Cancer Therapy–Anaemia questionnaires. Werecruited 116 anaemic patients across seven UK centres (oral iron n=61 (53%), and intravenous iron n=55(47%)). Eleven quality of life components increased by a clinically significant margin in the intravenous irongroup between recruitment and surgery compared with one component for oral iron. Median (IQR [range])visual analogue scores were significantly higher with intravenous iron at a three month outpatient review (oraliron 70, (60–85 [20–95]); intravenous iron 90 (80–90 [50–100]), p=0.001). The Functional Assessment ofCancer Therapy–Anaemia score comprises of subscales related to cancer, fatigue and non-fatigue itemsrelevant to anaemia. Median outpatient scores were higher, and hence favourable, for intravenous iron on theFunctional Assessment of Cancer Therapy–Anaemia subscale (oral iron 66 (55–72 [23–80]); intravenous iron 71(66–77 [46–80]); p=0.002), Functional Assessment of Cancer Therapy–Anaemia trial outcome index (oral iron108 (90–123 [35–135]); intravenous iron 121 (113–124 [81–135]); p=0.003) and Functional Assessment ofCancer Therapy–Anaemia total score (oral iron 151 (132–170 [69–183]); intravenous iron 168 (160–174 [125–186]); p=0.005). Thesefindings indicate that intravenous iron is more efficacious at improving quality of lifescores than oral iron in anaemic colorectal cancer patients

    Alternative Splicing Regulation During C. elegans Development: Splicing Factors as Regulated Targets

    Get PDF
    Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (∼18%) of the alternative splicing events studied show a strong change in the relative levels of the spliced isoforms (>4-fold) during development. Confirmation of the microarray data by RT-PCR was obtained for 70% of randomly selected genes tested. Among the genes with the most developmentally regulated alternatively splicing was the hnRNP F/H splicing factor homolog, W02D3.11 – now named hrpf-1. For the cassette exon of hrpf-1, the inclusion isoform comprises 65% of hrpf-1 steady state messages in embryos but only 0.1% in the first larval stage. This dramatic change in the alternative splicing of an alternative splicing factor suggests a complex cascade of splicing regulation during development. We analyzed splicing in embryos from a strain with a mutation in the splicing factor sym-2, another hnRNP F/H homolog. We found that approximately half of the genes with large alternative splicing changes between the embryo and L1 stages are regulated by sym-2 in embryos. An analysis of the role of nonsense-mediated decay in regulating steady-state alternative mRNA isoforms was performed. We found that 8% of the 352 events studied have alternative isoforms whose relative steady-state levels in embryos change more than 4-fold in a nonsense-mediated decay mutant, including hrpf-1. Strikingly, 53% of these alternative splicing events that are affected by NMD in our experiment are not obvious substrates for NMD based on the presence of premature termination codons. This suggests that the targeting of splicing factors by NMD may have downstream effects on alternative splicing regulation

    Signs of oral dryness in relation to salivary flow rate, pH, buffering capacity and dry mouth complaints

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aimed to investigate the signs of oral dryness in relation to different salivary variables and to correlate subjective complaints of oral dryness with salivary flow rate.</p> <p>Methods</p> <p>312 unmedicated healthy individuals belonging to three age groups, (6–11, 12–17, and 18–40 years) were examined clinically for signs of oral dryness. Resting and stimulated saliva were collected to determine flow rate, pH and buffering capacity. A questionnaire was used to obtain information on subjective sensation of dry mouth.</p> <p>Results</p> <p>Dry lip and dry mucosa were present in 37.5% and 3.2% of the sample respectively. The proportion of subjects who complained of oral dryness (19%) showed a stimulated salivary flow rate significantly lower than non complainers. Dry lip was significantly related to low resting flow rate but pH and buffering capacity did not show any significant relation to dry lip. Dry mucosa was not related to any of the above mentioned parameters.</p> <p>Conclusion</p> <p>The finding that the stimulated salivary flow rate was reduced in subjects complaining of dry mouth is of great clinical relevance, since the reduction is expected to be reflected in compromising various salivary functions.</p

    Intragenic deletion in the LARGE gene causes Walker-Warburg syndrome

    Get PDF
    Intragenic homozygous deletions in the Large gene are associated with a severe neuromuscular phenotype in the myodystrophy (myd) mouse. These mutations result in a virtual lack of glycosylation of α-dystroglycan. Compound heterozygous LARGE mutations have been reported in a single human patient, manifesting with mild congenital muscular dystrophy (CMD) and severe mental retardation. These mutations are likely to retain some residual LARGE glycosyltransferase activity as indicated by residual α-dystroglycan glycosylation in patient cells. We hypothesized that more severe LARGE mutations are associated with a more severe CMD phenotype in humans. Here we report a 63-kb intragenic LARGE deletion in a family with Walker-Warburg syndrome (WWS), which is characterized by CMD, and severe structural brain and eye malformations. This finding demonstrates that LARGE gene mutations can give rise to a wide clinical spectrum, similar as for other genes that have a role in the post-translational modification of the α-dystroglycan protein
    corecore