258 research outputs found

    Impact crater scaling laws

    Get PDF
    Impact craters are numerous on planetary bodies and furnish important information about the composition and past histories of those bodies. The interpretation of that information requires knowledge about the fundamental aspects of impact cratering mechanics. Since the typical conditions of impacts are at a size scale and velocity far in excess of experimental capabilities, direct simulations are precluded. Therefore, one must rely on extrapolation from experiments of relatively slow impacts of very small bodies, using physically based scaling laws, or must study the actual cases of interest using numerical code solutions of the fundamental physical laws that govern these processes. A progress report is presented on research on impact cratering scaling laws, on numerical studies that were designed to investigate those laws, and on various applications of the scaling laws developed by the author and his colleagues. These applications are briefly reviewed

    Energy coupling in catastrophic collisions

    Get PDF
    The prediction of events leading to the catastrophic collisions and disruption of solar system bodies is fraught with the same difficulties as are other theories of impact events; since one simply cannot perform experiments in the regime of interest. In the catastrophic collisions of asteroids that regime involves bodies of a few tons to hundred of kilometers in diameter, and velocities of several kilometers pre second. For hundred kilometer bodies, gravitational stresses dominate material fracture strengths, but those gravitational stresses are essentially absent for laboratory experiments. Only numerical simulations using hydrocodes can in principle analyze the true problems, but they have their own major uncertainties about the correctness of the physical models and properties. The question of the measure of the impactor and its energy coupling is investigated using numerical code calculations. The material model was that of a generic silicate rock, including high pressure melt and vapor phases, and includes material nonlinearity and dissipation via a Mie-Gruniesen model. A series of calculations with various size ratios and impact velocities are reported

    Experimental investigation of crater growth dynamics

    Get PDF
    This work is a continuation of an ongoing program whose objective is to perform experiments and to develop scaling relationships for large-body impacts onto planetary surfaces. The centrifuge technique is used to provide experimental data for actual target materials of interest. With both power and gas guns mounted on the rotor arm, it is possible to match various dimensionless similarity parameters, which have been shown to govern the behavior of large-scale impacts. The development of the centrifuge technique has been poineered by the present investigators and is documented by numerous publications, the most recent of which are listed below. Understanding the dependence of crater size upon gravity has been shown to be key to the complete determination of the dynamic and kinematic behavior of crater formation as well as ejecta phenomena. Three unique time regimes in the formation of an impact crater have been identified

    Projectile-shape dependence of impact craters in loose granular media

    Full text link
    We report on the penetration of cylindrical projectiles dropped from rest into a dry, noncohesive granular medium. The cylinder length, diameter, density, and tip shape are all explicitly varied. For deep penetrations, as compared to the cylinder diameter, the data collapse onto a single scaling law that varies as the 1/3 power of the total drop distance, the 1/2 power of cylinder length, and the 1/6 power of cylinder diameter. For shallow penetrations, the projectile shape plays a crucial role with sharper objects penetrating deeper.Comment: 3 pages, 3 figures; experimen

    Finding the Most Similar Concepts in Two Different Ontologies

    Full text link
    Abstract. A concise manner to send information from agent A to B is to use phrases constructed with the concepts of A: to use the concepts as the atomic tokens to be transmitted. Unfortunately, tokens from A are not understood by (they do not map into) the ontology of B, since in general each ontology has its own address space. Instead, A and B need to use a common communication language, such as English: the transmission tokens are English words. An algorithm is presented that finds the concept cB in OB (the ontology of B) most closely resembling a given concept cA. That is, given a concept from ontology OA, a method is provided to find the most similar concept in OB, as well as the similarity sim between both concepts. Examples are given. 1 Introduction an

    Eco-intelligent factories: Timescales for environmental decision support

    Get PDF
    Manufacturing decisions are currently made based on considerations of cost, time and quality. However there is increasing pressure to also routinely incorporate environmental considerations into the decision making processes. Despite the existence of a number of tools for environmental analysis of manu-facturing activities, there does not appear to be a structured approach for gener-ating relevant environmental information that can be fed into manufacturing decision making. This research proposes an overarching structure that leads to three approaches, pertaining to different timescales that enable the generation of environmental information, suitable for consideration during decision making. The approaches are demonstrated through three industrial case studies

    E-government adoption: A cultural comparison

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ Springer Science + Business Media, LLC 2008.E-government diffusion is an international phenomenon. This study compares e-government adoption in the U.K. to adoption in the U.S. In particular, this study seeks to determine if the same factors are salient in both countries. Several studies have explored citizen acceptance of e-government services in the U.S. However, few studies have explored this phenomenon in the U.K. To identify the similarities and differences between the U.K. and the U.S. a survey is conducted in the U.K. and the findings are compared to the literature that investigates diffusion in the U.S. This study proposes a model of e-government adoption in the U.K. based on salient factors in the U.S. A survey is administered to 260 citizens in London to assess the importance of relative advantage, trust and the digital divide on intention to use e-government. The results of binary logistic regression indicate that there are cultural differences in e-government adoption in the U.K. and the U.S. The results indicate that of the prevailing adoption constructs, relative advantage and trust are pertinent in both the U.S. and the U.K., while ICT adoption barriers such as access and skill may vary by culture. Implications for research and practice are discussed

    Impact Factor: outdated artefact or stepping-stone to journal certification?

    Full text link
    A review of Garfield's journal impact factor and its specific implementation as the Thomson Reuters Impact Factor reveals several weaknesses in this commonly-used indicator of journal standing. Key limitations include the mismatch between citing and cited documents, the deceptive display of three decimals that belies the real precision, and the absence of confidence intervals. These are minor issues that are easily amended and should be corrected, but more substantive improvements are needed. There are indications that the scientific community seeks and needs better certification of journal procedures to improve the quality of published science. Comprehensive certification of editorial and review procedures could help ensure adequate procedures to detect duplicate and fraudulent submissions.Comment: 25 pages, 12 figures, 6 table
    corecore