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Abstract. Manufacturing decisions are currently made based on considerations 

of cost, time and quality. However there is increasing pressure to also routinely 

incorporate environmental considerations into the decision making processes. 

Despite the existence of a number of tools for environmental analysis of manu-

facturing activities, there does not appear to be a structured approach for gener-

ating relevant environmental information that can be fed into manufacturing de-

cision making. This research proposes an overarching structure that leads to 

three approaches, pertaining to different timescales that enable the generation of 

environmental information, suitable for consideration during decision making. 

The approaches are demonstrated through three industrial case studies. 

Keywords: manufacturing ∙ environmental impact ∙ decision support ∙ artificial 

intelligence 

1 Introduction 

Globally, factories account for roughly one third of energy use [1], and one third of 

energy related CO2 production [2]. This is in addition to other air, land and water 

emissions, chemical use and demand for materials. The world’s factories are a hotspot 

of human induced environmental impacts and therefore require effective environmen-

tal management programmes. 

In contrast to this need, current manufacturing management systems and related 

decision making are optimised for cost effectiveness, time efficiency (productivity) 

and quality control [3], but not environmental impacts. These complex networks of 

data and information systems enable manufacturers to remain competitive by making 

informed short-term decisions and by forecasting over longer time scales. However, 

despite legislative developments in this area (e.g. [4]),  environmental considerations 

are not routinely included in this planning (Fig. 1), and it is becoming clear that their 

inclusion could lead to a significant reduction in environmental impacts [5]. In this 

work, an analysis of industrial decision making is contrasted with modern approaches 

for generation of consideration of environmental data in manufacturing decisions. 
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Fig. 1. Opportunities for the inclusion of environmentally related data in industrial decision 

making. 

A gap in the availability of environmental data is identified, with a three timescale 

(short, medium and long) approach proposed to enable more systematic generation of 

environmental information to feed into decision making within manufacturing. 

Correspondingly a number of case studies are presented demonstrating the genera-

tion of eco-intelligent information across these timescales. The paper concludes with 

a discussion of how the approaches described in this work can be applied more rou-

tinely to the wider industry. 

2 Literature review 

2.1 Manufacturing decision making 

Enterprise Resource Planning (ERP) is the generic term used for modern manufac-

turing management infrastructures (not just the software component) whereby there is 

one set of rules for balancing supply and demand, linking customers and suppliers in 

one chain, employing proven business processes for decision making, and providing 

cross-functional integration across departments and activities [6]. Because of its effec-

tiveness, some form of ERP can be found in almost every manufacturing company 

worldwide, and the provision of the software and support for ERP (e.g SAP, Oracle,) 

is in itself a global multi-billion dollar business [7]. Due to the perceived low eco-

nomic value of environmental performance, none of these systems are configured to 

allow comprehensive consideration of environmental impacts in decision making. In 

order to be able to consider environmental impacts in production planning and con-

trol, there is a need to measure and compare environmental metrics but these are diffi-

cult to define and vary widely depending upon specific manufacturing activities.  

Clearly within manufacturing companies there is a substantial amount of infor-

mation that is created on a daily basis which is used across many departments to ena-

ble efficient, profitable operation of their production plants [8]. Despite much of this 

data being used to support manufacturing activities across production, logistics, cus-

tomer promising, etc., there are other, environmentally focused, decisions that could 



be supported using this data. For example, by comparing production cell energy con-

sumption against product throughput would yield an indication of product energy 

embedded by that cell – which can be used as a benchmark to highlight and investi-

gate periods of over-consumption. By utilising this latent capability in environmental-

ly related data, there are often opportunities for reducing environmental impact [9]. 

2.2 Environmental information 

The idea of incorporating environmental considerations into manufacturing activi-

ties is not new. The establishment of Environmental Management Systems (EMS) 

have allowed manufacturers to make decisions on their activities with respect to envi-

ronmental performance [10]. In addition there are a number of both complex and 

simplified LCA type tools (SimaPro [PRé Consultants], CES [Granta Design], etc.) 

which can be and are used by manufacturing companies to assess the environmental 

impact of the products they make, and thus allow them to improve product design 

(‘design for X’ approaches) to reduce resource consumption and avoid other negative 

environmental impacts [11]. However LCA tools still only support slow, progressive 

improvements to manufacturing activities rather than optimising in the shorter term. 

Not only is there a complexity in understanding and implementing the soft (infor-

mation) side of incorporating environmental considerations into decision making, but 

there are issues regarding collecting or accessing sufficient information (both real-

time and longer term) to understand existing performance and thus influence decision 

in planning and control. Such a network of information within a manufacturing enter-

prise is typically only partially present. In particular the problems manufacturers face 

with real-time energy metering, management and optimization has been addressed 

[12] [13], and its relative low importance (in management agendas) coupled with a 

range of technical and economic implications. In reality, there is a lot of usable data 

generated within factories, but without the infrastructure to interpret and communicate 

eco-performance metrics, it is not possible to influence operation and planning deci-

sions.  

As a sign of progress within industry, smart metering has been used to help inform 

decisions by tracking not only the total electrical work and consumed energy, but also 

the characteristics of specific power consumption over time [14]. Subsequently, re-

search has focused on smart metering systems which involve the use of sensors, pro-

cessors and analysers to capture, transfer, identify and resolve energy and resource 

flows in manufacturing systems [15]. Unfortunately however, although some of this 

information could be used for the assessment of environmental impact, it currently is 

not due to the lack a suitable infrastructure.  

This highlights a need for a methodical approach to information gathering within 

factories, and for decision makers to have access to appropriate data, and be equipped 

with the ability to process this data such that it can be fed into decision making pro-

cesses. Only through these capabilities can manufacturers have the opportunity to 

improve their environmental performance through improved decision making. 



3 Eco-intelligent information 

Manufacturing decisions require the varied approaches to information processing 

depending upon the level at which they are taken [8] – clearly manufacturing decision 

at the machine level will have different requirements to those taken at the enterprise 

level as has been reported for manufacturing energy management [16]. Therefore 

when considering the generation of environmental data to feed into decision-making, 

a range of timescales (roughly corresponding to different manufacturing levels) with 

appropriate methodologies must be defined. In the current research, manufacturing 

decisions are segregated into short, medium, and long timescales pertaining to sec-

onds-hours, hours-months and months-years respectively.  

The fundamental thesis being that short-term decisions (such as machine optimisa-

tion) require the availability of near real-time data for increased autonomy, medium 

term decisions (such as maintenance scheduling) require suitable modelling ap-

proaches based on appropriate key performance indicators (KPI), whilst long term 

decisions (such as heavy investments in capital equipment) require forecasting of 

future impacts. The proposed structure for eco-intelligent information generation is 

shown in Fig. 2. 

For the three different timescales the data requirements and processing into infor-

mation are quite different. There will be variations in the type of data, amount of data, 

speed of acquisition and processing required, accuracy and complexity, repetition 

rate, use of intelligence (natural or artificial), importance to a company amongst many 

others. It is therefore not suitable to consider all decisions using same approach and 

consequently three approaches relating to the different timescales are presented and 

described in the remainder of this section. 

 

Fig. 2. Eco-intelligent information generation 



3.1 Short-term decision making 

Within the short term decision making timescale the research scope seeks to minimise 

a set of environmental factors in a manufacturing process by monitoring specific vari-

ables using the most appropriate sensing units, with the possibility of using intelligent 

decision making support systems.  

The first step of the approach is the analysis of the manufacturing process under 

investigation. This phase is aimed at identifying the aspects of the process and high-

lighting the related environmental impacts. The problem definition phase results in 

the identification of the environmental factors to be minimised. 

At this point, further consideration about the process needs to be undertaken, clas-

sifying which variables can be actively controlled and which variables can be moni-

tored. The sensing unit selection considers the physical and chemical aspects of the 

process, taking into account commercial availability. Prior to any industrial imple-

mentation, the eco-intelligent process monitoring approach requires extensive exper-

imental work in order to calibrate the system and to obtain reliable, repeatable results. 

 

Fig. 3. Short-term decision making support framework 



Once the sensing units have been validated, the experimental setup can be defined, 

along with a comprehensive experimental plan [17]. The data processing procedure is 

finalised to extract important features to transform data into useful information [18]. 

The most common methodologies involve time domain analysis, such as statistical 

features [19] and Principal Components Analysis (PCA). Whenever time domain 

features are not suitable, an alternative approach is the frequency domain analysis, 

such as Wavelet Transform [20]. 

In terms of decision making support systems and paradigms, neural networks are 

mainly used for pattern recognition, time series prediction and data fitting [21,22]. 

Other DM support systems include Fuzzy Logic paradigms [23], Genetic Algorithms 

(GA) [24], and Ant Colony Optimisation (ACO) [25]. 

The decision support algorithm will be implemented using the processed data and 

will generate a result. 

3.2 Medium-term decision making 

The problem definition comprises of a comprehensive analysis of the manufacturing 

process or system and is required to understand the aspects and the related environ-

mental impacts.  

The proposed methodology starts with a characterisation of the environmental 

drivers to take into account. The next step is the problem formulation: here, the 

framework aims at the identification of boundaries and targets according to the prob-

lem description. In this respect, taking into account the nature of the problem, firstly 

identify the decision variables, paying particular attention to units, and utilise them to 

formulate the objective function.  

Analogously, formulate the constraints, either logical or explicit to the problem de-

scription by expressing them in terms of decision variables. At this point it is possible 

to identify the data needed for the objective function and constraints. 

The model identification is crucial phase of information generation for medium-

term decisions as it describes the structure of the problem and allows the definition of 

key performance indicators (KPIs). 

According to the specific task, the identification of a suitable algorithm to solve the 

optimisation problem must be carried out. The most common categories of optimisa-

tion algorithms, are the finitely terminating algorithms,  such as Simplex [26], the 

iterative methods, e.g. Conjugate Gradient [27], and the heuristic methods, such as 

Genetic Algorithms [28] and Ant Colony Optimisation [29]. In this phase, the algo-

rithm must be adapted to the case study, considering the aspects highlighted in the 

first steps of the framework. 

A critical step in the optimisation process is the presentation of the solution in a 

concise and comprehensible summary for stakeholders. In this phase, the results gen-

erated need to be effectively comparable in terms of environmental performance in 

order to quantify the benefit obtained with the optimisation.  

 



 

Fig. 4. Medium-term decision making support framework 

3.3 Long term decision making 

There is a need to ensure that the outcomes of environmentally focussed strategic 

decisions, made over long timescales are in alignment with the greater business strat-

egy [30]. However, in contrast to short and medium term decisions, rather than attrib-

uting environmental impact to existing processes or activities of an enterprise, it is 

more appropriate to forecast and attribute environmental impact to activities required 

to support and deliver a new business activities. Therefore the first and most difficult 

phase of the process is planning, which incorporates the definition of the scope of the 

analysis (the decision in question) and sets the boundaries of consideration (e.g. time-

scales, areas of business, lifecycle stages) as shown in Fig. 5. 

Defining the scope, allows a comparison of different strategies that fulfil the same 

business need and thus allows a certain level of creativity within long-term decision 

making. Devising the potential strategies to overcome the problem can only be under-

taken by an appropriate team from within a company and will be highly problem spe-

cific. Such guidance is outside the scope of this work. 



 Fig. 5. Long-term decision making support framework 

Once potential strategies have been established, the boundary conditions, as de-

scribed above, allow the identification and quantification of aspects and impacts asso-

ciated with those solutions. Analysis of the aspects across the different manufacturing 

levels and lifecycle stages can be undertaken in a systematic manner (see [31] for 

example). There are a number of tools that assist in the evaluation of environmental 

impacts, such as LCA and EMS, as described in section 2.2. 

Depending upon information generated and the particular impacts considered and 

appropriate technique for comparison of results [32] should be used and ranking of 

the potential strategies carried out. The strategies with the best environmental perfor-

mances should be compared against the broader business strategy before being con-

sidered alongside economic and social performance metrics. Outcomes from the im-

plementation of the strategy can be used to feed back into future long-term decision 

making analysis. 



4 Case studies 

The following brief case examples demonstrate the application of the application of 

the eco-intelligent methodologies presented in section 3. 

4.1 Clean-in-place monitoring – Short term 

Clean-in-place (CIP) is a widely used technique applied to clean industrial equip-

ment without disassembly [33]. Cleaning food deposits, which contain both proteins 

and minerals, is a complex process that involves interactions between surface, depos-

its and detergent. It requires a multistage process, having many steps that may be 

controlled by shear stress, mass transfer, and chemical reaction [33].  

Existing CIP processes are time intensive and waste large amounts of energy, wa-

ter, and chemicals [34,35]. Furthermore, it is estimated that on average, a food and 

beverage plant will spend 20% of each day on cleaning equipment, which represents 

significant downtime for a plant [35]. 

The purpose of this case study is to reduce the cleaning time, so it is necessary to 

monitor the food traces left within the process tank (Fig. 6). Due to the chemical 

composition of the food deposit to be monitored, (in this case) milk proteins, the sens-

ing unit selected was a digital camera endowed with UV light set [36]. 

Data acquisition for this case study consists in the acquisition of a series of digital 

images, through a time-lapse technology. Data processing is needed to assess the 

surface fouling level within each digital image and allow the monitoring of the clean-

ing process. Image processing algorithms based on image segmentation and thresh-

olding [37] were employed for the quantification of remaining fouling.  

The decision making associated to this research aims at optimising the cleaning 

process and is specifically required to understand when each phase of the cleaning 

process becomes redundant and automatically switch to the next phase.  

 

Fig. 6. Clean-in-place experimental rig scheme 



4.2 Production scheduling – Medium term 

In a food manufacturing plant, an inventory of 50 products was considered. An im-

portant qualitative feature of many of the materials in the inventory was that they 

were a potentially hazardous contaminant if carried over between different production 

runs. These materials were categorised into multiple different types of Potentially 

Cross Contaminating Materials (PCCM). The content of each PCCM in each product 

was designated according to content levels 0-3. The changeover cleaning protocols, 

defined by the PCCM content of the former and latter product in a scheduled se-

quence, is defined in [24]. In this case study the identification of the environmental 

factor is straight forward, hence the cumulative change over time required (which 

includes water, energy and other overheads) was used as a proxy environmental im-

pact for overall resource consumption. The production sequence is to be optimized for 

minimal cumulative resource consumption during changeovers. 

Finding the optimal sequence of products with minimised resource consumption 

was determined to be analogous to the asymmetric travelling salesman problem 

(ATSP) [24], where each product was represented by a node and the ‘distance trav-

elled’ between nodes was represented by the changeover cleaning time. With the 

model identified, expedient solving of the ATSP in this context was approached using 

a genetic algorithm (GA) [24], which enables the determination of a near optimal 

solution of complex problems using feasible computing resources.  

The GA generated an optimal sequence for 50 products with the minimum change-

over cleaning time requirement. Repeat implementation of the GA provides alterna-

tive product sequences with equivalent total cleaning time. In this way, a selection of 

optimum sequences may be performed. 

4.3 Energy efficient business modelling – Long term 

One of the long-term decisions faced by modern manufacturing companies is how 

best to deliver value into the market. An increasing number of companies are moving 

towards the delivery of product service systems (PSS) in place of the more traditional 

make-sell business model [38]. PSSs have many potential economic, social and envi-

ronmental advantages. However, it is not always clear as to how beneficial a PSS may 

be, if at all, in comparison to the make-sell alternative. 

In this example a comparison of different business strategies for the provision of 

steel roofing is made, with a particular focus on lifecycle energy requirements. In one 

strategy the company supplies steel roofing panels via a traditional make-sell business 

model, and in the other, supplies identical roof panels via a PSS business model. In 

the latter instance, the manufacturer is responsible for the panels’ maintenance 

throughout their lifetime plus their end-of-life (EoL) recovery.  

For fair comparison, the performance metric is set as energy per square meter per 

year (MJ/m
2
yr) and the scope includes manufacture of the panels, use (maintenance) 

and end-of-life recovery. In addition, the lifetime of the steel roofing for the make-sell 

and PSS business strategies has been assumed to be 15 and 25 years respectively; the 



PSS roofing having, on average, an extended lifetime due to a regular maintenance 

schedule. 

The energy requirement per square-metre per year of the roofing for the two busi-

ness strategies is shown in Table 1.  

Table 1. Energy requirements considered through product life cycle for comparison between 

make-sell and PSS business strategies for steel roofing 

Energy Contributor Make-Sell  PSS  

Manufacture   

Production Energy 33 MJ/m
2 *

 33 MJ/m
2 *

 

Σ(Process Energy + Plant Energy) 145 MJ/m
2 #

 145 MJ/m
2 #

 

ΣCorporation Energy 2 MJ/m
2 #

 4 MJ/m
2 &

 

Use (maintenance) 

N/A 

 

ΣCorporation Energy 2 MJ/m
2 
yr 

&
 

End of Life  

Production Energy -48 MJ/m
2 #

 

ΣCorporation Energy 4 MJ/m
2 &

 

Lifetime of panel 15 yr 25 yr 

Performance metric 12 MJ/m
2
 yr 7.5 MJ/m

2
 yr 

* = data calculated from physical material  properties, 
#
 = data taken or inferred from [39], 

&
 = data 

simulated from company/customer location 

The energy demand for the manufacturing stage of the product represents the larg-

est energy outlay for the company, and so preserving this investment in energy 

(through the use of additional energy during use and EoL) by adopting a PSS business 

strategy becomes beneficial from an energy consumption standpoint.  

Based on the analysis of energy requirements for each strategy, a decision is likely 

to be made to proceed with the PSS business model. In this exemplifying study, only 

one performance metric was considered: in a more detailed application it is likely that 

a greater number of indicators would need to be calculated, considered and compared 

with the wider business strategy. 

5 Concluding discussion 

There is a need to more routinely incorporate eco-intelligent information into manu-

facturing decision making if the industry is to reduce its environmental impacts whilst 

still meeting the need of consumers. Three approaches for the generation of eco-

intelligent information have been described that related to different types of manufac-

turing decision (based on varying timescales). For short-term decisions (seconds to 

hours) understanding the requirements for sensing and automation are important task. 

For medium term decisions (hours to months) developing KPIs and associated data 

models is of primary importance. In contrast, for longer term decisions (months to 

years) the key challenge is in the problem definition and setting of system boundaries. 



Each approach has been presented and demonstrated using three industrial case ex-

amples. 

In summary the possibility of routinely incorporating environmental information 

into manufacturing decision making across all timescales is possible, but requires 

markedly different approaches. Precisely how to compare eco-intelligent information 

with economic and social considerations, remains an active topic of global research. 
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