16,242 research outputs found

    Mean first passage time for nuclear fission and the emission of light particles

    Get PDF
    The concept of a mean first passage time is used to study the time lapse over which a fissioning system may emit light particles. The influence of the "transient" and "saddle to scission times" on this emission are critically examined. It is argued that within the limits of Kramers' picture of fission no enhancement over that given by his rate formula need to be considered.Comment: 4 pages, RevTex, 4 postscript figures; with correction of misprints; appeared in Phys. Rev. Lett.90.13270

    Complex joint probabilities as expressions of determinism in quantum mechanics

    Get PDF
    The density operator of a quantum state can be represented as a complex joint probability of any two observables whose eigenstates have non-zero mutual overlap. Transformations to a new basis set are then expressed in terms of complex conditional probabilities that describe the fundamental relation between precise statements about the three different observables. Since such transformations merely change the representation of the quantum state, these conditional probabilities provide a state-independent definition of the deterministic relation between the outcomes of different quantum measurements. In this paper, it is shown how classical reality emerges as an approximation to the fundamental laws of quantum determinism expressed by complex conditional probabilities. The quantum mechanical origin of phase spaces and trajectories is identified and implications for the interpretation of quantum measurements are considered. It is argued that the transformation laws of quantum determinism provide a fundamental description of the measurement dependence of empirical reality.Comment: 12 pages, including 1 figure, updated introduction includes references to the historical background of complex joint probabilities and to related work by Lars M. Johanse

    Uncertainties of size measurements in electron microscopy characterization of nanomaterials in foods

    Get PDF
    Electron microscopy is a recognized standard tool for nanomaterial characterization, and recommended by the European Food Safety Authority for the size measurement of nanomaterials in food. Despite this, little data have been published assessing the reliability of the method, especially for size measurement of nanomaterials characterized by a broad size distribution and/or added to food matrices. This study is a thorough investigation of the measurement uncertainty when applying electron microscopy for size measurement of engineered nanomaterials in foods. Our results show that the number of measured particles was only a minor source of measurement uncertainty for nanomaterials in food, compared to the combined influence of sampling, sample preparation prior to imaging and the image analysis. The main conclusion is that to improve the measurement reliability, care should be taken to consider replications and matrix removal prior to sample preparation

    Statistical fluctuations for the fission process on its decent from saddle to scission

    Get PDF
    We reconsider the importance of statistical fluctuations for fission dynamics beyond the saddle in the light of recent evaluations of transport coefficients for average motion. The size of these fluctuations are estimated by means of the Kramers-Ingold solution for the inverted oscillator, which allows for an inclusion of quantum effects.Comment: 12 pages, Latex, 5 Postscript figures; submitted to PRC e-mail: [email protected] www home page: http://www.physik.tu-muenchen.de/tumphy/e/T36/hofmann.htm

    Entanglement and four wave mixing effects in the dissipation free nonlinear interaction of two photons at a single atom

    Get PDF
    We investigate the nonlinear interaction between two photons in a single input pulse at an atomic two level nonlinearity. A one dimensional model for the propagation of light to and from the atom is used to describe the precise spatiotemporal coherence of the two photon state. It is shown that the interaction generates spatiotemporal entanglement in the output state similar to the entanglement observed in parametric downconversion. A method of generating photon pairs from coherent pump light using this quantum mechanical four wave mixing process is proposed.Comment: 10 pages, including 3 figures, correction in eq.(7), updated references, final version for publication in PR

    Time Averaged VHE Spectrum of Mrk 421 in 2005

    Full text link
    The blazar Mrk421 was observed independently, but contemporaneously, in 2005 at TeV energies by MAGIC, the Whipple 10m telescope, and by a single VERITAS telescope during the construction phase of operations. A comparison of the time averaged spectra, in what was a relatively quiescent state, demonstrates the level of agreement between instruments. In addition, the increased sensitivity of the new generation instruments, and ever decreasing energy thresholds, questions how best to compare new observational data with archival results.Comment: Submitted to Proceedings of "4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008

    Learning Arbitrary Statistical Mixtures of Discrete Distributions

    Get PDF
    We study the problem of learning from unlabeled samples very general statistical mixture models on large finite sets. Specifically, the model to be learned, ϑ\vartheta, is a probability distribution over probability distributions pp, where each such pp is a probability distribution over [n]={1,2,,n}[n] = \{1,2,\dots,n\}. When we sample from ϑ\vartheta, we do not observe pp directly, but only indirectly and in very noisy fashion, by sampling from [n][n] repeatedly, independently KK times from the distribution pp. The problem is to infer ϑ\vartheta to high accuracy in transportation (earthmover) distance. We give the first efficient algorithms for learning this mixture model without making any restricting assumptions on the structure of the distribution ϑ\vartheta. We bound the quality of the solution as a function of the size of the samples KK and the number of samples used. Our model and results have applications to a variety of unsupervised learning scenarios, including learning topic models and collaborative filtering.Comment: 23 pages. Preliminary version in the Proceeding of the 47th ACM Symposium on the Theory of Computing (STOC15
    corecore