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Abstract 14 

Electron microscopy is a recognized standard tool for nanomaterial characterization, and 15 

recommended by the European Food Safety Authority for the size measurement of 16 

nanomaterials in food. Despite this, little data have been published assessing the reliability of 17 

the method, especially for size measurement of nanomaterials characterized by a broad size 18 

distribution and/or added to food matrices. This study is a thorough investigation of the 19 

measurement uncertainty when applying electron microscopy for size measurement of 20 

engineered nanomaterials in foods. Our results show that the number of measured particles 21 

was only a minor source of measurement uncertainty for nanomaterials in food, compared to 22 
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the combined influence of sampling, sample preparation prior to imaging and the image 23 

analysis. The main conclusion is that to improve the measurement reliability, care should be 24 

taken to consider replications and matrix removal prior to sample preparation.  25 

 26 

Keywords: Nanomaterials, Electron Microscopy, Food, Measurement Uncertainty, Minimal 27 

Sample Intake.  28 
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1. Introduction 29 

Engineered nanomaterials (ENMs) are increasingly finding new applications in the food 30 

industry. Some food additives already used for decades (Dekkers et al., 2010) might be 31 

classified as nanomaterials, e.g. synthetic amorphous silica (SAS). Others as for instance 32 

silver ENMs are applied in food packaging (Chaudhry et al., 2008). The potential risks posed 33 

by the presence of ENMs in foods and food contact materials is an area of major interest 34 

because of the current uncertainties in relation to the potential consumer exposure to ENMs 35 

through food, and the fate and effects of the orally ingested ENMs in the body (Dudkiewicz, 36 

Luo, Tiede, & Boxall, 2012). In order for studies on ENMs to provide meaningful and 37 

accurate data to assess exposure appropriately developed and validated methods are required 38 

(Joner, Hartnik & Amundsen, 2008; Calzolai, Gilliland, & Rossi, 2012; Hassellöv, Readman, 39 

Ranville, & Tiede, 2008).  40 

Electron microscopy (EM) is one of the standard methods that are currently used for ENM 41 

measurement (Calzolai et al., 2012) and also recommended for such use by the European 42 

Food Safety Authority (EFSA) in a guidance document (EFSA Scientific Committee, 2011). 43 

In the guidance document EM is listed as a method of first choice for ENM measurement in 44 

foods along other complementary methods. Nevertheless so far no validation of this 45 

technique for the characterization of ENMs has been presented. Only a few studies have 46 

assessed the uncertainty of ENMs size measurement by EM using spherical ENMs 47 

characterized by a narrow size distribution and in pristine dispersions e.g. (Braun, Kestens, 48 

Franks, Roebben, Lamberty & Linsinger, 2012; Lamberty, Franks, Braun, Kestens, Roebben 49 

& Linsinger, 2011). The presence of the food matrix in the sample is however expected to 50 

introduce difficulties during sample preparation and analysis (Tiede, Boxall, Tear, Lewis, 51 

David & Hassellöv, 2008; Dudkiewicz et al., 2012; Dudkiewicz et al., 2011) and is likely to 52 

affect the ENM measurement uncertainty. Food samples are usually characterized by a high 53 
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water content, and EM instruments operate under high vacuum. This means that samples at 54 

least need to be dehydrated for analysis. The EFSA acknowledges that sample preparation 55 

and in particular matrix removal can introduce changes to the original state of ENMs in the 56 

sample and thus preparation protocols involving minimal processing should be applied. 57 

Additionally only small sample volumes (order of pL) can be used during EM analysis, thus 58 

limiting the number of measured ENMs and affecting statistical reliability (Linsinger et al., 59 

2013). 60 

This paper presents an evaluation of EM procedures for the measurement of ENMs in foods 61 

using simple sample preparation methods which allow to retain ENMs in the food matrices. 62 

This study relies on two examples of reference materials, namely spherical silver 63 

nanoparticles (AgNPs) in meat and SAS in tomato soup covering narrow (AgNPs) and broad 64 

(SAS) size distributions. Both of these reference materials were produced within an EU FP7 65 

funded project “NanoLyse” on the development and validation of analytical methodologies 66 

for ENMs in foods. The choice of ENMs reflects realistic scenarios in which humans could 67 

be exposed to ENMs that are applied in food packaging, potentially migrating to food 68 

(AgNPs) and ENMs readily applied as a food additive (SAS). The robustness of the obtained 69 

data from SAS containing reference materials was tested by analyzing a commercially 70 

available food product with declared content of SAS.  71 

The study addressed three main questions: 1) how many ENMs need to be measured in order 72 

to obtain a reliable measure of size; 2) what is the precision of ENM measurement by EM; 73 

and 3) which step(s) within the procedure, including sampling, sample preparation, imaging 74 

and image analysis, contribute most to the measurement uncertainty?  75 

 76 
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2. Experimental design 77 

2.1 Materials  78 

The materials included in the study as well as characterization information provided by the 79 

manufacturer or determined in our laboratories are listed in Table 1. Two groups of reference 80 

food materials spiked with ENMs were used: These were chicken paste (Meat 1, Meat 2 and 81 

Meat Blank), and tomato soup (Soup 1, Soup 2 and Soup Blank). Meat reference materials 82 

contained AgNPs and soup reference materials contained SAS at the spiked concentrations 83 

listed in Table 1. These reference materials were developed by the Institute for Reference 84 

Materials and Measurements of the European Commission’s Joint Research Centre (JRC-85 

IRMM, Geel, Belgium). The development of soup and meat reference materials was 86 

described in (Grombe et al., 2014 and In press).  87 

Along with the reference materials, the JRC-IRMM also provided pure suspensions of the 88 

respective ENMs that had been used in the preparation of these reference materials. The 89 

suspensions were also studied to provide information on the original characteristics of ENMs 90 

prior to spiking into foods as recommended (EFSA Scientific Committee, 2011). 91 

Additionally, a commercial soup powder (Soup COM) with a declared content of SAS- E551 92 

was obtained from a local supermarket. As a control for the Soup COM, SAS powder (SAS 93 

COM)- NM203 from the JRC, Institute for Health and Consumer Protection, Nanomaterial 94 

Repository for Toxicology Testing (Ispra, Italy) was used.  95 

Prior to the study, Soup COM and SAS COM were suspended in aqueous media using a 96 

magnetic stirrer. Soup COM was mixed at a ratio of 11:100 with boiling tap water. The SAS 97 

COM was mixed at a ratio 2:98 with borate buffer at pH 8.0 of composition 0.05M H3BO3, 98 

0.05M KCl, 0.004M NaOH (BB 8.0).  99 
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2.2 Electron microscopy and energy dispersive x-ray 100 

spectroscopy 101 

Two different EM methods were selected for imaging depending on the sample’s matrix type 102 

(solid/liquid) and chemistry of the ENMs. The SAS has generally weak contrast in EM, 103 

however for imaging in scanning electron microscopy (SEM), samples can be coated with a 104 

nanometric layer of metal to improve contrast and minimize charging. AgNPs could be best 105 

visualized using TEM as these ENMs were embedded in a layer of the meat sample. 106 

Therefore for imaging of SAS and AgNPs containing samples, SEM and TEM were selected 107 

respectively.  108 

Samples were prepared for analysis as described in Supplementary data section 2 and (Lari & 109 

Dudkiewicz, 2014). The preparation methods were developed and evaluated in our 110 

laboratories before use in this study. In course of this evaluation we have found that these 111 

sample preparation methods allowed to limit agglomeration of the ENMs (a typical artifact 112 

hampering image analysis) and recover sufficient number of ENMs for imaging and 113 

measurements.  114 

The SEM images were taken using an FEI Sirion S field emission gun SEM equipped with a 115 

through the lens detector and operating at a voltage of 5 kV and spot size 3.  116 

The TEM images were acquired with a JEOL JEM 2011 TEM operating at 200 kV and using 117 

a digital camera (Gatan 794). 118 

2.3 Data acquisition and image analysis 119 

All provided particle size measurements refer to the equivalent circle diameter (ECD) which 120 

is the diameter of the circle with the same surface area as projected in the 2D image of the 121 

ENMs. The data acquisition parameters used in this study were summarized in Table 2.  122 
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The images were taken from randomly selected places (predetermined coordinates) in the 123 

grid. SEM and TEM image area sizes were adjusted to capture and measure the maximal 124 

number of particles for the respective sample types (imaging at relatively low 125 

magnifications). As a result, the micrograph area was relatively large in proportion to the 126 

measured ENMs size. Hence, it was necessary to estimate a size cut-off point for the smallest 127 

measurable size of a particle. For SEM images with good contrast and large pixel size of 8.7 128 

nm, the smallest measurable particle size (Table 2) was estimated experimentally (based on 129 

the evaluation by our laboratories using repetitive imaging and image analysis of mono-130 

dispersed gold nanoparticles at decreasing magnification). For TEM images with poor 131 

contrast and small pixel sizes (1.6 nm) the smallest measurable particle size (Table 2) was 132 

chosen so as to minimize background interference during image analysis. 133 

The acquired images were analyzed using object based image analysis (OBIA) software. A 134 

software solution within the eCognition® Architect framework (version 8.7.2, Trimble 135 

Geospatial) was specifically developed for semi-automated image analysis of ENMs in 136 

complex matrices by the Centre for Geoinformatics, University of Salzburg in Austria.  137 

The levels of matrix interference (natural or contaminating nanomaterials) were investigated 138 

prior to analyses of food spiked with ENMs reference materials using blank food matrices 139 

provided also by JRC IRMM. The results proved that the contribution of interfering natural 140 

or contaminating nanomaterials to the measurement results was negligible in the blank with 141 

the selected cut-off values. 142 
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2.4 Quantification of uncertainty in particle size measurements 143 

related to measured sample number and broadness of the size 144 

distribution  145 

A simulated approach previously applied for estimation of influence of the number of 146 

samples to precision of microbiological counts (Jarvis & Hedges 2011) was used to derive the 147 

dependence of ECD measurement uncertainty on the number of measured particles in the 148 

sub-set. This approach was based on re-sampling without replacement from large dataset 149 

(population) multiple sub-sets of data with given number of elements. Subsequently the 150 

measurement uncertainty was estimated based on variance of means from the obtained sub-151 

sets featuring same number of re-sampled elements. Jarvis & Hedges (2011) showed that the 152 

variance between the means of data subsets was slightly and possibly not significantly larger 153 

in case of sampling without replacement compared to sampling with replacement (bootstrap). 154 

We preferred a more conservative estimate of the minimum required number of counted 155 

ENM to achieve a given measurement uncertainty and thus also chose re-sampling without 156 

replacement. Five of the samples listed in Table 1 (Meat 1, AgNPs 1, Soup 1, SAS 1, and 157 

SAS COM) were selected to cover different interquartile ranges of particle size distributions 158 

(given as relative to median IQR%). For each of these samples, 200 images recorded as part 159 

of the intermediate precision study (section 2.5) were used. For each sample, 1388 particles 160 

were randomly selected from 200 images. These 1388 particles from each sample were used 161 

to create a population and subjected to simulations. The simulations were based on random 162 

selection without replacement of either 25, 50, 75, 100, 150, 200, 250 and 500 particles from 163 

the population of each sample, and the process was repeated 500 times for each sample and 164 

particle sampling number. Median particle sizes and relative standard deviations (RSDpn) 165 

between them were then estimated from the 500 sets for each sample and particle number. In 166 

order to investigate the magnitude of RSDpn increase with increase of IQR%, the obtained 167 
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RSDpn values were plotted against the IQR% values for each particle sampling number (Fig. 168 

1A). In the following, the obtained dependencies of RSDpn from IQR% were further used to 169 

fit a phenomelogical equation (Eq. 11) for calculation of standard relative uncertainty related 170 

to measured number of ENMs. 171 

2.5 Intermediate precision and expanded uncertainty of particle 172 

size measurements 173 

The materials listed in Table 1 were used to determine the intra-laboratory reproducibility 174 

(intermediate precision) of size measurement. The study setup was based on the routine 175 

protocol for analytical method validation as described in (Boque, Maroto, Riu, & Rius, 2002). 176 

For this, samples were prepared and imaged in duplicate on 10 different days spread through 177 

a period of four weeks.  178 

Different vials of Meat 1 and 2 were prepared and analyzed every day. For Soup 1 and 2 it 179 

was decided to use only 1 jar over the 10 testing days due to the variability of the pH in 180 

between received jars (5.2-6.5), which could potentially affect particle size distribution. The 181 

opened jars were not refrigerated for the duration of the test. The Soup COM was freshly 182 

prepared on each day. Respective particle stock dispersions were sampled from one bottle 183 

during the whole test.  184 

Data acquired from this test were used to calculate relative standard deviation (RSD) of the 185 

median particle ECD measurements for repeatability (RSDr), day to day variation (RSDdd), 186 

and intermediate precision (RSDip) according to equations (Eq.) 1-3: 187 

 
𝑅𝑅𝑅𝑟 =

100 × √𝑀𝑅𝑀
𝑠

 
Eq. 1 
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𝑅𝑅𝑅𝑑𝑑 = 100 ×
�(𝑀𝑅𝑀 −𝑀𝑅𝑀) + 𝑀𝑅𝑀

𝑛 × 𝑒−
𝑀𝑀𝑀
𝑀𝑀𝑀

𝑠
 

Eq. 2 

 
𝑅𝑅𝑅𝑖𝑖 = �𝑅𝑅𝑅𝑟2 + 𝑅𝑅𝑅𝑑𝑑2  

Eq. 3 

Where: 188 

MSW- median ECD mean squares of replicates measured on the same day 189 

MSB- median ECD mean squares of replicates of all 10 days 190 

s- mean ECD of the median measurements between replicates 191 

The MSW and MSB were calculated by using the output from the “one way ANOVA 192 

function” available in Microsoft Office Excel 2007. 193 

Eq. 2 was adapted from (Federer, 1968) as suggested in (Linsinger, Pauwels, van der Veen, 194 

Schimmel, & Lamberty, 2001) to allow calculation of RSDdd for results, where MSW>MSB. 195 

The RSDr and RSDip obtained for two levels of concentrations of ENMs in the reference 196 

materials and relevant stock dispersions were compared using the F-test with significance 197 

level (p) of 0.05.  198 

The expanded uncertainty as described in (ISO/IEC Guide 98-3:2008) gives a measure of an 199 

interval where the value is confidently within, and is obtained by combining all the sources of 200 

measurement uncertainty and multiplying by the coverage factor-k (k=2 for approximately 201 

95% confidence interval). In this study the expanded uncertainty (Uexp) was derived 202 

combining RSDip and goodness of instrumental calibration (RUt) according to Eq. 4.  203 

 
𝑈𝑒𝑒𝑖 = 𝑘 × �𝑅𝑅𝑅𝑖𝑖2 + 𝑅𝑈𝑡2 Eq. 4 

 204 
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The RUt values were 1.4% and 1.9% for TEM and SEM respectively and were calculated 205 

using the procedure described in the (Linsinger, 2010). The RUt was determined by the 206 

measurement of ENMs reference material (NIST 30 nm gold nanoparticles, manufacturer’s 207 

id: 8012).  208 

2.6 Influence of data acquisition stages on intermediate precision  209 

As the data acquisition from EM is more complex than in many other analytical methods, 210 

estimation of the relative uncertainty for each of the stages in the process was of interest. This 211 

was tested by using four selected reference materials: for SEM: SAS 1, Soup 1, and for TEM: 212 

AgNPs 2 and Meat 2. Four separate experiments were performed to assess RSD attributed to 213 

sampling (RSDs), sample preparation (RSDsp), imaging (RSDi) and image analysis (RSDia). 214 

The following experiments were performed: 215 

1) Sampling - 10 different portions of a sample were prepared on the same day and imaged 216 

within one day;  217 

2) Sample preparation - 10 replicates of the same subsample were prepared on the same day, 218 

then imaged within a day;  219 

3) Imaging - a single replicate was imaged on 10 different days; and  220 

4) Image analysis – the same set of 10 images was analyzed 10 times (returning image 221 

analysis settings to default every time). 222 

Experiments 1-3 resulted in RSD values (RSD1, RSD2 and RSD3 respectively). Obtained this 223 

way RSD values represented uncertainty of several factors combined and not only the sought 224 

individual uncertainty contribution. Therefore to calculate individual RSD contributions, we 225 

used the root-sum-square manner subtraction Eq. 5-7 of inclusive uncertainties from RSD1, 226 

RSD2 and RSD3 as proposed in (Boque et al., 2002). 227 
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 𝑅𝑅𝑅𝑠 = �𝑅𝑅𝑅12 − (𝑅𝑅𝑅𝑠𝑖2 + 𝑅𝑅𝑅𝑖𝑖2 +𝑅𝑅𝑅𝑖𝑝2 ) Eq. 5 

 𝑅𝑅𝑅𝑠𝑖 = �𝑅𝑅𝑅22 − (𝑅𝑅𝑅𝑖𝑖2 + 𝑅𝑅𝑅𝑖𝑝2 ) Eq. 6 

 𝑅𝑅𝑅𝑖 = �𝑅𝑅𝑅32 − (𝑅𝑅𝑅𝑖𝑖2 + 𝑅𝑅𝑅𝑖𝑝2 ) Eq. 7 

To validate values determined for contributing uncertainties their sum was calculated using 228 

Eq.8 and compared against intermediate precision values determined previously (as described 229 

in section 2.5).  230 

 
𝑅𝑅𝑅𝑡𝑡𝑡𝑖𝑡 = �𝑅𝑅𝑅𝑠2 + 𝑅𝑅𝑅𝑠𝑖2 + 𝑅𝑅𝑅𝑖2 + 𝑅𝑅𝑅𝑖𝑖2 + 𝑅𝑅𝑅𝑖𝑝2  

Eq. 8 

3. Results and discussion 231 

3.1 Uncertainty in particle size measurements related to 232 

measured sample number and broadness of the size distribution  233 

Linear relationships were obtained between IQR% and RSDpn of median ECD measurements 234 

depending on measured number of particles (N) (Fig. 1A). Fits between R2= 0.973 to 0.997 235 

were achieved with an preset intercept of 0.0 and were described using Eq. 9. The slope 236 

coefficient a in Eq. 9 clearly depended on the number of particles, therefore dependence of a 237 

to N was shown in Fig. 1B. This dependence followed a power curve and was well described 238 

(R2=0.998) by Eq. 10.  239 

 𝑅𝑅𝑅𝑖𝑝 = 𝑎 × 𝐼𝐼𝑅% Eq. 9 

 𝑎 = 1.0071 × 𝑁−0.553 Eq. 10 

 240 
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The expected measurement uncertainty for samples with known IQR% and a defined sample 241 

size can be calculated as:  242 

 𝑅𝑅𝑅𝑖𝑝 = 1.0071 × 𝑁−0.553 × 𝐼𝐼𝑅% Eq. 11 

Eq. 11 can be compared to a theoretically derived equation (Supplementary data, section 3, 243 

equation A1) adapted from work of Professor Hideto Yoshida, Hiroshima University, Japan 244 

in ISO standard draft (Draft ISO/WD 14411-2, Unpublished results). The comparison shows 245 

that both approaches do not give significantly different level of the RSDpn for a given sample. 246 

Nevertheless, as the empirical Eq. 11 does not assume any particular particle size distribution 247 

and theoretical one refers to special case of normal distribution, Eq 11 is considered more 248 

practical for the ENMs studied here. 249 

Using Eq. 11 for calculation of N for samples with different IQR%, and RSDpn at the level of 250 

5 and 1%, results shown in Table 3 were obtained. 251 

This shows that, under the assumption that the size distribution of the particle population is 252 

sufficiently narrow, the minimum number of measured particles required to achieve RSDpn of 253 

5% may be much smaller than the 500 particles previously recommended for reliable 254 

measurement (Linsinger et al., 2013). Nevertheless to achieve a lower uncertainty of 1%, 255 

particle numbers need to be typically higher than 500. The acceptability of the RSDpn 256 

threshold will ultimately depend on other contributing factors during data acquisition. This is 257 

further discussed in subsequent sections. 258 

3.2 Intermediate precision, expanded uncertainty and trueness of 259 

particle size measurements 260 

The intermediate precision (Eq. 3), expanded uncertainty (Eq. 4) and RSDpn (calculated 261 

according to Eq. 11 and N and IQR% values from Table 1) were summarized in Fig. 2.  262 
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3.2.1 Number of measured particles and intermediate precision 263 

The RSDpn for all measured samples was significantly lower (1-7%) than RSDip (5-21%) (F 264 

test, p<0.05). This is in agreement with the published data on characterization of the 265 

reference materials for ENMs measurement. For example in the study of Braun et al. (2012), 266 

ENM with IQR% ~ 20 and 500 particles measured per replicate was characterized by EM in 267 

11 different facilities. The RSDip measured between the laboratories ranged from 1.2 to 8.5 268 

whereas calculated for this material from Eq. 11, RSDpn=0.6. The result suggests that factors 269 

other than particle size distribution broadness and measured particle number must affect the 270 

measurement uncertainty. 271 

3.2.2 Food matrix presence and intermediate precision 272 

For samples containing SAS, the presence of the soup matrix significantly increased the 273 

uncertainty of the measurements (RSDip ranging 13-21%) when compared to the stock 274 

dispersions (RSDip ~5%) (F test, p<0.05). Contrary to this result, the RSDip were similar for 275 

AgNPs in stock and in meat at respective concentrations, i.e. 21-22% for the lower 276 

concentration and 8-10% for the higher one (F test, p>0.05). Therefore the presence of the 277 

matrix hampered reproducibility of measurement of ENMs only in soup samples. The 278 

uncertainty increase for the measurement of SAS in soup seemed to depend on the nature of 279 

the sample. SAS in the Soup COM were measured with 13% RSDip, whereas for Soup 1 and 280 

2 RSDip exceeded 20%. For Soup 1 and 2, only one jar of the sample for the 10 testing days 281 

spread over period of four weeks was used. Nevertheless, there was no observable trend of 282 

changing particle size toward smaller or larger values with sampling time (Supplementary 283 

data, section 1, Fig. A2). Thus either a) subsamples taken at the same time point had a higher 284 

chance of being closely related by size, or b) imaging of the samples on different days 285 

introduced a major error to the measurement. This was further investigated in section 3.3. 286 
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3.2.3 Measurement uncertainties introduced by electron microscopy in 287 

comparison to other measurement methods 288 

3.2.3.1 Nanomaterials in stock dispersions 289 

Previously published data indicate that EM may offer similar or better uncertainties in 290 

measurement of ENMs in pristine dispersions compared to other techniques, such as e.g. 291 

dynamic light scattering (DLS), gas electrophoretic mobility molecular analyzer (GEMMA), 292 

centrifugal liquid sedimentation, or small angle neutron x-ray scattering (Braun et al., 2012; 293 

Braun et al. 2011; Kaiser & Waters, 2007a; Kaiser & Waters, 2007b; Small & Waters, 2012). 294 

Same ENMs dispersions as studied here were characterized also by Grombe et al. (2014 and 295 

In press) using dynamic light scattering (DLS) and GEMMA. Authors obtained similar 296 

uncertainties (RSD calculated from data given in cited publications as standard deviations of 297 

the median or mean measurements between replicates, corresponding to RSDip) for SAS 1 298 

and 2 using GEMMA and DLS (3-6%) as SEM in this study (5 and 6%). Nevertheless, 299 

AgNPs 1 and 2 were measured with higher uncertainty by TEM (21 and 8% respectively) 300 

compared to GEMMA (8.2 and 2.7% respectively), but similar to DLS (measurements of 301 

these samples were carried out on 7 different instruments and the uncertainty values were 302 

ranging between these instruments from 2-16%). The low precision of TEM sizing of AgNPs 303 

in aqueous dispersion and especially AgNPs 1 could be an effect of sample inhomogeneity, 304 

sample preparation, or other problem with data acquisition, since similar uncertainty values 305 

were also obtained for AgNPs in Meat 1 and 2 samples.  306 

3.2.3.2 Nanomaterials in food matrices 307 

Recently publications on characterization of the studied here reference materials of SAS in 308 

Soup and AgNPs in Meat appeared (Grombe et al., 2014 and In press). In both cited studies 309 

authors used state of the art analytical methodologies. Reference material of SAS in Soup 2 310 

was measured by means of asymmetric flow field-flow fractionation with inductively coupled 311 
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plasma-mass spectrometry detection (AF4-ICP-MS) and AgNPs in Meat 1 and 2 by means of 312 

single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS). Methods used 313 

by the authors for the preparation of the reference materials for AF4-ICP-MS and SP-ICP-314 

MS analyses were based on matrix digestion (either by acid or enzymes according to 315 

protocols described by: Loeschner et al., 2013; Peters, Rivera, van Bemmel, Marvin, Weigel 316 

& Bouwmeester, 2014; Grombe et al., 2014). Digestion most likely allowed better 317 

homogenization of the samples prior to measurements compared to the sample preparation 318 

applied here, which aimed at retaining ENMs within the matrix for EM analysis. It was thus 319 

expected that ENMs measurements obtained by EM in this study were characterized by a 320 

higher uncertainty than ones generated by AF4-ICP-MS and SP-ICP-MS in (Grombe et al., 321 

2014 and In press). As expected AgNPs in meat were measured with better precision by SP-322 

ICP-MS (RSD of 5% for Meat 1 and 3% for Meat 2) than TEM (RSD of 19% for Meat 1 and 323 

10% for Meat 2). Nevertheless SAS in Soup 2 was measured with similar precision by AF4-324 

ICP-MS and SEM (21 and 20% respectively). These high standard deviations indicate either 325 

undetected effects in one of the steps of the analytical process or intrinsic inhomogeneity of 326 

the sample. 327 

3.2.4. Trueness 328 

Measurement trueness can only be estimated when a true value of the measured property is 329 

known. The reference materials used here were characterized by a range of different 330 

analytical techniques in Grombe et al., (2014; and In press). Previously Grombe et al. (2014) 331 

showed the SAS in Soup 2 measured by AF4-ICP-MS had nearly five-fold larger diameter 332 

compared to that measured by SEM here (208 and 44 nm respectively). It is expected that 333 

several factors contribute to the measurement discrepancies: differences in sample 334 

preparation (only dilution in case of SEM and matrix acid digestion for AF4-ICP-MS), size 335 

distribution being expressed either per particle number (SEM) or weight (AF4-ICP-MS) as 336 
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well as different measurement expressions (ECD for SEM, and hydrodynamic diameter for 337 

AF4-ICP-MS) being comparable in theory only for perfectly spherical ENMs (Bowen, 2002).  338 

Median diameters of AgNPs in Meat 1 and Meat 2 characterized by SP-ICP-MS (51 and 50 339 

nm respectively; Grombe et al., In press) were nearly twice as large as those measured by 340 

TEM (27 and 26 nm respectively) in this study. Nevertheless, in previous work where authors 341 

measured AgNPs 1 and freshly spiked them into blank chicken meat matrix (Loeschner et al., 342 

2013) SP-ICP-MS revealed AgNPs median diameter between 30-35 nm, regardless of the 343 

matrix presence which is closer related to the TEM measurements reported in Table 1 (26-32 344 

nm for AgNPs in meat and stock dispersions). In this case it seems like ageing of AgNPs in 345 

the meat matrix affected the size reported by the SP-ICP-MS method. 346 

Overall it becomes clear that estimation of the measurement trueness for ENMs in foods is a 347 

challenge, as all methods have their inherent bias and measured properties are often not the 348 

same. It is therefore difficult to assess which result should be trusted over others. Factors 349 

such as procedural/instrumental interferences, size measurement expression, cut-off points 350 

and limits of detection for the particle size all affect median size value and result 351 

interpretation.  352 

3.3 Influence of data acquisition stages on the intermediate 353 

precision  354 

The results presented in section 3.2 suggested that sample homogeneity might have been a 355 

major cause for increase of ENMs size measurement uncertainty in foods. As we have shown 356 

this was the case not only for EM but also for methods which were expected to be more 357 

robust, such as AF4-ICP-MS. To test if this was the case further experiments on the 358 

uncertainty level introduced by individual stages in the analysis process were performed on 359 

chosen reference materials (SAS 1, Soup 1, AgNPs 2 and Meat 2) as described in section 2.6. 360 

The results were summarized in Table 4. 361 
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The highest uncertainty in measurement of ENMs in food samples was attributed to the 362 

sampling (for Meat 2 and Soup1 RSDsp=8 and 11% respectively). At the same time the 363 

sampling was affecting the measurement uncertainty of ENMs in stock dispersions very little 364 

(RSDs up to 1%).  365 

Such results were partly expected. The EMs can analyze only a very small volume (in the 366 

order of a few pL) of the sample at a time, and it seems that it is not possible to make food 367 

products so homogenous as to ensure representativeness of such small sample volume.  368 

The imaging, sample preparation, and image analysis were each expected to influence the 369 

measurement uncertainty of the AgNPs in meat. This is because the particles were suspended 370 

in meat matrix at different depths and it was not possible to fully focus on all of the particles 371 

within the field of view. Additionally, the sample layer obtained in the preparation procedure 372 

was thick (approximately 100 nm) and not uniform (up to 33 % RSD of the sample thickness 373 

between different images- based on Lari & Dudkiewicz, 2014). This inevitably affected the 374 

definition of particle boundaries and consequently the results of image analysis. It also means 375 

that the instrumental performance had limited influence on the RSDi of AgNPs in meat. An 376 

interesting result is the better performance of sample preparation for AgNPs in meat 377 

(RSDsp=3%) than respective stock dispersion (RSDsp=9%), which suggests that the presence 378 

of the meat matrix may have prevented random ENMs clustering in course of sample 379 

preparation. Agglomeration to an extent could be noted in stock dispersions of AgNPs 380 

(Supplementary data, section 1, Fig. A1).  381 

Imaging of the SAS in stock dispersion, yielded higher uncertainty (RSDi=6%) than in soup 382 

(RSDi=2%). It is possible that for this sample the instrumental or operator performance on a 383 

day-to-day basis and certain particle features (shape, size) may have had a significant impact 384 

on the measurements. As with the increase of the size (on median particles in SAS 1 were 385 

characterized by larger ECD than in Soup 1- Table 1), the particle perimeter increases, the 386 
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possible instrumental or operator variations in alignment, noise from the microscope 387 

surroundings (stage drifting), may cause a shift in the particle boundaries and affect size 388 

measurement more than in case of small, nearly spherical particles. 389 

3.3.1 Combined uncertainty of data acquisition stages and intermediate 390 

precision 391 

In theory the RSDtotal (Eq. 8) should be equal to RSDip (Eq. 3) if all contributing elements 392 

were included in Eq. 8. Indeed the RSDtotal was very similar to RSDip (Table 4 and Fig. 2, a 393 

difference of 1 %) for all the samples, with the exception of Soup 1. The estimated RSDtotal 394 

for Soup 1 (14%) had values closer to the previously estimated RSDip of Soup COM (13%) 395 

rather than of Soup 1 (20%). It is hypothesized that the degradation of liquid soup matrix 396 

over the precision test duration (four weeks) caused dynamic changes in the particle size. 397 

Particles’ random agglomeration and release from complexes with soup solids due to the 398 

bacterial/ oxidative activity, pH and ionic strength changes could result in a very high day-to-399 

day size measurement variation. The result also emphasizes robustness of derived RSDip 400 

value for the measurement of SAS in very different food matrices (fully liquid reference 401 

material, and commercially processed powder).  402 

The SAS as E551 food additive is mainly used in food powders and therefore RSDip derived 403 

for Soup COM relates to the case of this additive better than Soup 1 and 2. Nevertheless, for 404 

other types of ENMs, the obtained information in study of Soup 1 and 2 might be useful in 405 

relation to liquid foods, where the matrix changes will have to be considered as one of the 406 

factors that might influence particle size and measurement uncertainty.  407 
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4. Conclusions 408 

In our study a partial validation of the two main electron microscopy methods - SEM and 409 

TEM - for the measurement of ENMs in solid and liquid food matrices was achieved. In the 410 

process, we addressed the issues of measurement uncertainty and minimal sample size 411 

required for adequate EM measurements.   412 

We found that the EM methods were able to measure ENMs in food with typically an 413 

expanded uncertainty of around 21-27% accounting for different samples (solid and liquid 414 

food matrix, ENMs with narrow and broad size distribution, different imaging conditions and 415 

sample preparation methods). This study will therefore be useful in predicting uncertainties 416 

associated with the measurement of ENMs in complex matrices by EM, where the ENMs are 417 

relatively stable. For samples containing particles that are undergoing constant transformation 418 

e.g. aggregation and/or dissolution, much greater expanded uncertainties may be expected. 419 

For example, an expanded uncertainty of 43% was derived in this study for liquid soup 420 

samples containing SAS that were analyzed at different time points.  421 

The study also showed that a number of factors can influence uncertainties in the particle size 422 

measurements by EM methods. The results have indicated that the number of measured 423 

particles and small sample intake were only secondary contributors to the ENMs size 424 

measurement uncertainty in foods. The major factor was the sampling step. Most food 425 

samples are inherently inhomogeneous, and cannot be homogenized to the nanoscale. As a 426 

result, different sub-samples of the same sample may vary a lot in terms of particle size. To 427 

overcome the sampling issue a viable option may be to digest the food matrix or extract the 428 

particles, instead of the homogenization steps tested in this study. However, such 429 

pretreatment is likely to change particle characteristics and in consequence lead to inaccurate 430 

results. Furthermore comparison of the measurement uncertainties related to EM against 431 



21 

other analytical techniques also suggested that if ENMs undergo dynamic changes in the food 432 

sample, even matrix removal will not improve measurement precision. 433 

Alternative possibility for improvement of particle size measurement precision is to increase 434 

the sample replication during routine analysis. As it is shown here, the particle quantities 435 

necessary to obtain reliable data on median size measurement would depend on broadness of 436 

the size distribution and the desired measurement confidence level, which can be calculated 437 

from a simple dependence as outlined in Eq 11. Therefore cutting the number of measured 438 

particles to an essential minimum, and increasing the number of replication instead, would 439 

allow acquisition of more precise information on the particle size and a better 440 

characterization of the sample.  441 

In summary, with few considerations EM can be successfully applied for the measurement of 442 

ENMs in foods. Nevertheless further work is required to address few existing issues, such as 443 

measurement trueness of ENMs especially characterized by a broad size distribution and non-444 

spherical shape as studied here example of SAS. For this further developments allowing cross 445 

comparison of the data outputs from EM and other techniques or/ and reference materials are 446 

needed. 447 
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Sampling Sample 
preparation Imaging Image 

analysis 
Particle 
number 

oup 1 11% 7% 2% 2%  2% Tota  
 

14% 
AS 1 1% 1% 6% 1% 2%  

 
7% 

Meat 2 8% 3% 3% 3% 3%  
 

10% 
AgNPs 2 negligible 9% negligible 2% 3%  

 
9% 



Table 1 List of the materials used. NanoLyse labeling from Grombe et al. (2014 and In press) 

provided to allow comparison of data  

aInterquartile range, bvalues for ENMs size and number of particles counted (per replicate- 1 EM grid) obtained 

by characterization with transmission electron microscopy (TEM)- AgNPs containing samples, and scanning 

electron microscopy (SEM)- SAS containing samples based on intermediate precision study data (for full size 

distribution and EM images see Supplementary data, Fig. A1), cPolyvinylpyrrolidone, dstatic light scattering, 
erefers to powder, measured using ICP-MS Thermo Axiom instrument at Food and Environment Research 

Agency, UK..  

  

Sample Type of 
particles 

Concentration of 
core particle % 

w/w 

Declared 
average  

particle size 

Median [IQR]a  

size 
(nm)b numberb 

Meat 1 
(NanoLyse13) 

Ag coated 
with PVPc 

 

0.01 - 27 [12] 32 [24] 

Meat 2 
(NanoLyse14) 

0.05 - 26 [10] 83 [87] 

AgNPs 1 
(NanoLyse03) 

0.02 42±10 nm by 
TEM 30 [11]  47 [29] 

AgNPs 2 
(NanoLyse04) 

0.1 42±10 nm by 
TEM 32 [11] 163 [35] 

Soup 1 
(NanoLyse09) 

Synthetic 
amorphous 

SiO2 
stabilized 

with 
NaOH 

0.5 - 42 [24] 264 [493] 

Soup 2 
(NanoLyse10) 

2 - 41 [21] 909 [987] 

SAS 1 
(NanoLyse01) 

1 120 nm by 
SLSd 57 [40] 1361 [770] 

SAS 2 
(NanoLyse02) 

4 120 nm by 
SLSd 60 [49] 5640 [951] 

SAS COM Synthetic 
amorphous

SiO2 
(E551) 

~2 - 53 [57] 1190 [463] 

Soup COM 0.28e - 57 [40] 305 [528] 



Table 2 Data acquisition parameters  

Technique 

Area of a 
single 
image  

(µm x µm) 

Pixel 
size  
(nm) 

Smallest 
particle area  
(no. of pixels) 

Smallest 
particle 

ECD  
(nm) 

No. of 
images 

analysed 
per 

replicate 

Volume 
analyzed 

per 
replicate 

(mL) 

SEM 6.3 x 4.73 8.7 15 30 10 Cannot be 
specified 

TEM 1.6 x 1.6 1.6 80 16 10 2.8 x 10-9 a 

arefers to the volume of Meat 1 and 2 sample with a density of 1.0 g/mL 

  



 

Table 3 The smallest number of particles necessary to obtain a desired level of RSDpn of the 

median ECD for particle populations with known IQR% according to Eq. 11 

 

IQR% 
Numbered of particles needed for targeted RSDpn 

RSDpn=5 RSDpn=1 

34 38 994 

39 49 1630 

54 91 5260 

75 170 17166 

111 359 70424 

 

  



Table 4 The contribution of the stages in the data acquisition process to the RSDtotal 
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Fig. 1. (A) Dependence of median size measurement RSDpn of the sample size N to IQR% 

and (B) Relationship between slope coefficient a of Eq. 11 and N.  

Fig. 2 The median ECD particle number, repeatability, day to day, intermediate precision and 

expanded uncertainty for ENMs measured in respective samples. 
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