470 research outputs found

    Dielectric response due to stochastic motion of pinned domain walls

    Full text link
    We study the contribution of stochastic motion of a domain wall (DW) to the dielectric AC susceptibility for low frequencies. Using the concept of waiting time distributions, which is related to the energy landscape of the DW in a disordered medium, we derive the power-law behavior of the complex susceptibility observed recently in some ferroelectrics below Curie temperature.Comment: 5 pages, 2 figures, revtex

    Surface segregation of conformationally asymmetric polymer blends

    Full text link
    We have generalized the Edwards' method of collective description of dense polymer systems in terms of effective potentials to polymer blends in the presence of a surface. With this method we have studied conformationally asymmetric athermic polymer blends in the presence of a hard wall to the first order in effective potentials. For polymers with the same gyration radius RgR_g but different statistical segment lengths lAl_{A} and lBl_{B} the excess concentration of stiffer polymers at the surface is derived as % \delta \rho _{A}(z=0)\sim (l_{B}^{-2}-l_{A}^{-2}){\ln (}R_{g}^{2}/l_{c}^{2}{)%}, where lcl_{c} is a local length below of which the incompressibility of the polymer blend is violated. For polymer blends differing only in degrees of polymerization the shorter polymer enriches the wall.Comment: 11 pages, 7 figures, revtex

    Electronic Properties of CdS/CdTe Solar Cells as Influenced by a Buffer Layer

    Get PDF
    We considered modification of the defect density of states in CdTe as influenced by a buffer layer in ZnO(ZnS, SnSe)/CdS/CdTe solar cells. Compared to the solar cells employing ZnO buffer layers, implementation of ZnSe and ZnS resulted in the lower net ionized acceptor concentration and the energy shift of the dominant deep trap levels to the midgap of CdTe. The results clearly indicated that the same defect was responsible for the inefficient doping and the formation of recombination centers in CdTe. This observation can be explained taking into account the effect of strain on the electronic properties of the grain boundary interface states in polycrystalline CdTe. In the conditions of strain, interaction of chlorine with the grain boundary point defects can be altered

    Dynamic crossover in the global persistence at criticality

    Full text link
    We investigate the global persistence properties of critical systems relaxing from an initial state with non-vanishing value of the order parameter (e.g., the magnetization in the Ising model). The persistence probability of the global order parameter displays two consecutive regimes in which it decays algebraically in time with two distinct universal exponents. The associated crossover is controlled by the initial value m_0 of the order parameter and the typical time at which it occurs diverges as m_0 vanishes. Monte-Carlo simulations of the two-dimensional Ising model with Glauber dynamics display clearly this crossover. The measured exponent of the ultimate algebraic decay is in rather good agreement with our theoretical predictions for the Ising universality class.Comment: 5 pages, 2 figure

    Critical Behaviour of 3D Systems with Long-Range Correlated Quenched Defects

    Full text link
    A field-theoretic description of the critical behaviour of systems with quenched defects obeying a power law correlations ∼∣x∣−a\sim |{\bf x}|^{-a} for large separations x{\bf x} is given. Directly for three-dimensional systems and different values of correlation parameter 2≤a≤32\leq a \leq 3 a renormalization analysis of scaling function in the two-loop approximation is carried out, and the fixed points corresponding to stability of the various types of critical behaviour are identified. The obtained results essentially differ from results evaluated by double ϵ,δ\epsilon, \delta - expansion. The critical exponents in the two-loop approximation are calculated with the use of the Pade-Borel summation technique.Comment: Submitted to J. Phys. A, Letter to Editor 9 pages, 4 figure

    Induced Scattering and Two-Photon Absorption of Alfven Waves with Arbitrary Propagation Angles

    Full text link
    The equation for temporary evolution of spectral energy of collisionless Alfven waves is derived in framework of weak turbulence theory. The main nonlinear processes for such conditions are induced scattering and two quantum absorption of Alfven waves by thermal ions. The equation for velocity distribution of thermal particles is derived that describes diffusion in momentum space due to this nonlinear processes. Comparison is done with the results of another authors. Results obtained are qualitatively differ from the ones obtained for the case of Alfven waves propagation along mean magnetic field.Comment: 8 page
    • …
    corecore