1,048 research outputs found

    Is there a no-go theorem for superradiant quantum phase transitions in cavity and circuit QED ?

    Get PDF
    In cavity quantum electrodynamics (QED), the interaction between an atomic transition and the cavity field is measured by the vacuum Rabi frequency Ω0\Omega_0. The analogous term "circuit QED" has been introduced for Josephson junctions, because superconducting circuits behave as artificial atoms coupled to the bosonic field of a resonator. In the regime with Ω0\Omega_0 comparable to the two-level transition frequency, "superradiant" quantum phase transitions for the cavity vacuum have been predicted, e.g. within the Dicke model. Here, we prove that if the time-independent light-matter Hamiltonian is considered, a superradiant quantum critical point is forbidden for electric dipole atomic transitions due to the oscillator strength sum rule. In circuit QED, the capacitive coupling is analogous to the electric dipole one: yet, such no-go property can be circumvented by Cooper pair boxes capacitively coupled to a resonator, due to their peculiar Hilbert space topology and a violation of the corresponding sum rule

    Fresnel zone plate telescopes for X-ray imaging II: numerical simulations with parallel and diverging beams

    Full text link
    We present the results of simulations of shadows cast by a zone plate telescope which may have one to four pairs of zone plates. From the shadows we reconstruct the images under various circumstances. We discuss physical basis of the resolution of the telescope and demonstrate this by our simulations. We allow the source to be at a finite distance (diverging beam) as well as at an infinite distance (parallel beam) and show that the resolution is worsened when the source is nearby. By reconstructing the zone plates in a way that both the zone plates subtend the same solid angles at the source, we obtain back high resolution even for sources at a finite distance. We present simulated results for the observation of the galactic center and show that the sources of varying intensities may be reconstructed with accuracy. Results of these simulations would be of immense use in interpreting the X-ray images from recently launched CORONAS-PHOTON satellite.Comment: 17 pages, 36 figures, Published in Experimental Astronom

    Spin squeezing via quantum feedback

    Get PDF
    We propose a quantum feedback scheme for producing deterministically reproducible spin squeezing. The results of a continuous nondemolition atom number measurement are fed back to control the quantum state of the sample. For large samples and strong cavity coupling, the squeezing parameter minimum scales inversely with atom number, approaching the Heisenberg limit. Furthermore, ceasing the measurement and feedback when this minimum has been reached will leave the sample in the maximally squeezed spin state.Comment: 4 pages, 3 figures, revtex

    Enhanced Transmission of Light and Particle Waves through Subwavelength Nanoapertures by Far-Field Interference

    Full text link
    Subwavelength aperture arrays in thin metal films can enable enhanced transmission of light and matter (atom) waves. The phenomenon relies on resonant excitation and interference of the plasmon or matter waves on the metal surface. We show a new mechanism that could provide a great resonant and nonresonant transmission enhancement of the light or de Broglie particle waves passed through the apertures not by the surface waves, but by the constructive interference of diffracted waves (beams generated by the apertures) at the detector placed in the far-field zone. In contrast to other models, the mechanism depends neither on the nature (light or matter) of the beams (continuous waves or pulses) nor on material and shape of the multiple-beam source (arrays of 1-D and 2-D subwavelength apertures, fibers, dipoles or atoms). The Wood anomalies in transmission spectra of gratings, a long standing problem in optics, follow naturally from the interference properties of our model. The new point is the prediction of the Wood anomaly in a classical Young-type two-source system. The new mechanism could be interpreted as a non-quantum analog of the superradiance emission of a subwavelength ensemble of atoms (the light power and energy scales as the number of light-sources squared, regardless of periodicity) predicted by the well-known Dicke quantum model.Comment: Revised version of MS presented at the Nanoelectronic Devices for Defense and Security (NANO-DDS) Conference, 18-21 June, 2007, Washington, US

    The murky distinction between self-concept and self-efficacy: beware of lurking jingle-jangle fallacies

    Get PDF
    This study extends the classic constructive dialogue/debate between self-concept and self-efficacy researchers (Marsh, Roche, Pajares & Miller, 1997) regarding the distinctions between these two constructs. The study is a substantive-methodological synergy, bringing together new substantive, theoretical and statistical models, and developing new tests of the classic jingle-jangle fallacy. We demonstrate that in a representative sample of 3,350 students from math classes in 43 German schools, generalized math self-efficacy and math outcome expectancies were indistinguishable from math self-concept, but were distinct from test-related and functional measures of self-efficacy. This is consistent with the jingle-jangle fallacies that are proposed. On the basis of pre-test-variables, we demonstrate negative frame-of-reference effects in social (big-fish-little-pond effect) and dimensional (internal/external frame-of-reference effect) comparisons for three self-concept-like constructs in each of the first four years of secondary school. In contrast, none of the frame-of-reference effects were significantly negative for either of the two self-efficacy-like constructs in any of the four years of testing. After controlling for pre-test variables, each of the three self-concept-like constructs (math self-concept, outcome expectancy, and generalized math self-efficacy) in each of the four years of secondary school was more strongly related to post-test outcomes (school grades, test scores, future aspirations) than were the corresponding two self-efficacy-like factors. Extending discussion by Marsh et al. (1997) we clarify distinctions between self-efficacy and self-concept; the role of evaluation, worthiness, and outcome expectancy in self-efficacy measures; and complications in generalized and global measures of self-efficacy

    Reply to: Atom gravimeters and the gravitational redshift

    Full text link
    We stand by our result [H. Mueller et al., Nature 463, 926-929 (2010)]. The comment [P. Wolf et al., Nature 467, E1 (2010)] revisits an interesting issue that has been known for decades, the relationship between test of the universality of free fall and redshift experiments. However, it arrives at its conclusions by applying the laws of physics that are questioned by redshift experiments; this precludes the existence of measurable signals. Since this issue applies to all classical redshift tests as well as atom interferometry redshift tests, these experiments are equivalent in all aspects in question.Comment: Reply to P. Wolf et al., arXiv:1009.060

    Bounce Conditions in f(R) Cosmologies

    Full text link
    We investigate the conditions for a bounce to occur in Friedmann-Robertson-Walker cosmologies for the class of fourth order gravity theories. The general bounce criterion is determined and constraints on the parameters of three specific models are given in order to obtain bounces solutions. It is found that unlike the case of General Relativity, a bounce appears to be possible in open and flat cosmologies.Comment: 11 pages LaTe
    • 

    corecore