5,293 research outputs found

    Elliptic flow in Au+Au collisions at sqrt(s_NN) = 130 GeV

    Get PDF
    Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt(s_NN)=130 GeV using the STAR TPC at RHIC. The elliptic flow signal, v_2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented

    On Existence and Properties of Approximate Pure Nash Equilibria in Bandwidth Allocation Games

    Full text link
    In \emph{bandwidth allocation games} (BAGs), the strategy of a player consists of various demands on different resources. The player's utility is at most the sum of these demands, provided they are fully satisfied. Every resource has a limited capacity and if it is exceeded by the total demand, it has to be split between the players. Since these games generally do not have pure Nash equilibria, we consider approximate pure Nash equilibria, in which no player can improve her utility by more than some fixed factor α\alpha through unilateral strategy changes. There is a threshold αδ\alpha_\delta (where δ\delta is a parameter that limits the demand of each player on a specific resource) such that α\alpha-approximate pure Nash equilibria always exist for ααδ\alpha \geq \alpha_\delta, but not for α<αδ\alpha < \alpha_\delta. We give both upper and lower bounds on this threshold αδ\alpha_\delta and show that the corresponding decision problem is NP{\sf NP}-hard. We also show that the α\alpha-approximate price of anarchy for BAGs is α+1\alpha+1. For a restricted version of the game, where demands of players only differ slightly from each other (e.g. symmetric games), we show that approximate Nash equilibria can be reached (and thus also be computed) in polynomial time using the best-response dynamic. Finally, we show that a broader class of utility-maximization games (which includes BAGs) converges quickly towards states whose social welfare is close to the optimum

    Gamma Ray Bursts: recent results and connections to very high energy Cosmic Rays and Neutrinos

    Full text link
    Gamma-ray bursts are the most concentrated explosions in the Universe. They have been detected electromagnetically at energies up to tens of GeV, and it is suspected that they could be active at least up to TeV energies. It is also speculated that they could emit cosmic rays and neutrinos at energies reaching up to the 1018102010^{18}-10^{20} eV range. Here we review the recent developments in the photon phenomenology in the light of \swift and \fermi satellite observations, as well as recent IceCube upper limits on their neutrino luminosity. We discuss some of the theoretical models developed to explain these observations and their possible contribution to a very high energy cosmic ray and neutrino background.Comment: 12 pages, 7 figures. Text of a plenary lecture at the PASCOS 12 conference, Merida, Yucatan, Mexico, June 2012; to appear in J.Phys. (Conf. Series

    Measurement of the magnetic properties of the Ferroxcube 8C12m material

    Get PDF

    Directed and Elliptic Flow at RHIC

    Full text link
    We present the directed flow measurement (v1v_1) from Au+Au collisions at \sqrtsNN = 62 GeV. Over the pseudorapidity range we have studied, which covers η\eta from -1.2 to 1.2 and 2.4<η<42.4 < |\eta| < 4, the magnitude of v1v_1 for charged particles is found to increase monotonously with pseudorapidity for all centralities. No ``v1v_1 wiggle'', as predicted by various theoretical models, is observed at midrapidity. Elliptic flow (v2v_2) from moderate high ptp_t particles (36GeV/c3-6 GeV/c) at \sqrtsNN = 200 GeV is presented as a function of impact parameter. It is found that models that are based on {\it jet quenching} alone appear to underpredict v2v_2 at moderate high ptp_t, while the model that incorporates both, recombination and fragmentation, describes the data better.Comment: 6 pages, 4 figures. Proceeding for Hot Quark 04 conference Changes in the revision are mostly English fixes. v1 versus eta plot is flipped over to follow the conventio

    Azimuthal Correlations with High-pT Multi-Hadron Cluster Triggers in Au+Au Collisions at sqrt(sNN) = 200 GeV

    Full text link
    Di-hadron correlation measurements have been used to probe di-jet production in collisions at RHIC. A strong suppression of the away-side high-pT yield in these measurements is direct evidence that high-pT partons lose energy as they traverse the strongly interacting medium. However, since the momentum of the trigger particle is not a good measure of the jet energy, azimuthal di-hadron correlations have limited sensitivity to the shape of the fragmentation function. We explore the possibility to better constrain the initial parton energy by using clusters of multiple high-pT hadrons in a narrow cone as the 'trigger particle' in the azimuthal correlation analysis. We present first results from this analysis of multi-hadron triggered correlated yields in Au+Au collisions at sqrt(sNN) = 200 GeV from STAR. The results are compared to Pythia calculations, and the implications for energy loss and jet fragmentation are discussed.Comment: 5 pages, 4 figures, submitted to the proceedings of the 24th Winter Workshop on Nuclear Dynamic

    Solving kk-means on High-dimensional Big Data

    Full text link
    In recent years, there have been major efforts to develop data stream algorithms that process inputs in one pass over the data with little memory requirement. For the kk-means problem, this has led to the development of several (1+ε)(1+\varepsilon)-approximations (under the assumption that kk is a constant), but also to the design of algorithms that are extremely fast in practice and compute solutions of high accuracy. However, when not only the length of the stream is high but also the dimensionality of the input points, then current methods reach their limits. We propose two algorithms, piecy and piecy-mr that are based on the recently developed data stream algorithm BICO that can process high dimensional data in one pass and output a solution of high quality. While piecy is suited for high dimensional data with a medium number of points, piecy-mr is meant for high dimensional data that comes in a very long stream. We provide an extensive experimental study to evaluate piecy and piecy-mr that shows the strength of the new algorithms.Comment: 23 pages, 9 figures, published at the 14th International Symposium on Experimental Algorithms - SEA 201

    Observing Spontaneous Strong Parity Violation in Heavy-Ion Collisions

    Get PDF
    We discuss the problem of observing spontaneous parity and CP violation in collision systems. We discuss and propose observables which may be used in heavy-ion collisions to observe such violations, as well as event-by-event methods to analyze the data. Finally, we discuss simple monte-carlo models of these CP violating effects which we have used to develop our techniques and from which we derive rough estimates of sensitivities to signals which may be seen at RHIC

    Energy consumption and capacity utilization of galvanizing furnaces

    No full text
    An explicit equation leading to a method for improving furnace efficiency is presented. This equation is dimensionless and can be applied to furnaces of any size and fuel type for the purposes of comparison. The implications for current furnace design are discussed. Currently the technique most commonly used to reduce energy consumption in galvanizing furnaces is to increase burner turndown. This is shown by the analysis presented here actually to worsen the thermal efficiency of the furnace, particularly at low levels of capacity utilization. Galvanizing furnaces are different to many furnaces used within industry, as a quantity of material (in this case zinc) is kept molten within the furnace at all times, even outside production periods. The dimensionless analysis can, however, be applied to furnaces with the same operational function as a galvanizing furnace, such as some furnaces utilized within the glass industry. © IMechE 2004
    corecore