34,833 research outputs found

    Integrated voice/data protocols for satellite channels

    Get PDF
    Several integrated voice/data protocols for satellite channels are studied. The system consists of two types of traffic: voice calls which are blocked-calls-cleared and the data packets which may be stored when no channel is available. The voice calls are operated under a demand assignment protocol. Three different data protocols for data packets are introduced. Under Random Access Data (RAD), the Aloha random access scheme is used. Due to the nature of random access, the channel utilization is low. Under Demand Assignment Data (DAD), a demand assignment protocol is used to improve channel utilization. Since a satellite channel has long propagation delay, DAD may perform worse than RAD. The two protocols are combined to obtain a new protocol called Hybrid Data (HD). The proposed protocols are fully distributed and no central controller is required. Numerical results show that HD enjoys a lower delay than DAD and provides a much higher channel capacity than RAD. The effects of fixed and movable boundaries are compared in partitioning the total frequency band to voice and data users

    Possibly New Charmed Baryon States from Bˉ0→ppˉD0\bar B^0\to p\bar p D^{0} Decay

    Full text link
    We examine the invariant mass spectrum of D0pD^{0}p in Bˉ0→ppˉD0\bar B^0\to p\bar p D^{0} decay measured by BABAR and find that through the 2-step processes of Bˉ0→Bc+(→D0p)pˉ\bar B^0\to {\bf B_c^+}(\to D^{0} p)\bar p, where Bc{\bf B_c} denotes a charmed baryon state, some of the peaks can be identified with the established Σc(2800)+\Sigma_c(2800)^+, Λc(2880)+\Lambda_c(2880)^+ and Λc(2940)+\Lambda_c(2940)^+. Moreover, in order to account for the measured spectrum, it is necessary to introduce a new charmed baryon resonance with (m, Γ)=(3212±20, 167±34)(m,\,\Gamma)=(3212\pm 20,\,167\pm 34) MeV.Comment: 8 pages, 1 figure, title changed and discussions updated, version accepted for publication in Phys. Rev.

    Soliton Resonances for MKP-II

    Get PDF
    Using the second flow - the Derivative Reaction-Diffusion system, and the third one of the dissipative SL(2,R) Kaup-Newell hierarchy, we show that the product of two functions, satisfying those systems is a solution of the modified Kadomtsev-Petviashvili equation in 2+1 dimension with negative dispersion (MKP-II). We construct Hirota's bilinear representation for both flows and combine them together as the bilinear system for MKP-II. Using this bilinear form we find one and two soliton solutions for the MKP-II. For special values of parameters our solution shows resonance behaviour with creation of four virtual solitons. Our approach allows one to interpret the resonance soliton as a composite object of two dissipative solitons in 1+1 dimensions.Comment: 11 pages, 2 figures, Talk on International Conference "Nonlinear Physics. Theory and Experiment. III", 24 June-3 July, 2004, Gallipoli(Lecce), Ital

    Multi-wavelength Emission from the Fermi Bubble III. Stochastic (Fermi) Re-Acceleration of Relativistic Electrons Emitted by SNRs

    Get PDF
    We analyse the model of stochastic re-acceleration of electrons, which are emitted by supernova remnants (SNRs) in the Galactic Disk and propagate then into the Galactic halo, in order to explain the origin on nonthermal (radio and gamma-ray) emission from the Fermi Bubbles (FB). We assume that the energy for re-acceleration in the halo is supplied by shocks generated by processes of star accretion onto the central black hole. Numerical simulations show that regions with strong turbulence (places for electron re-acceleration) are located high up in the Galactic Halo about several kpc above the disk. The energy of SNR electrons that reach these regions does not exceed several GeV because of synchrotron and inverse Compton energy losses. At appropriate parameters of re-acceleration these electrons can be re-accelerated up to the energy 10E12 eV which explains in this model the origin of the observed radio and gamma-ray emission from the FB. However although the model gamma-ray spectrum is consistent with the Fermi results, the model radio spectrum is steeper than the observed by WMAP and Planck. If adiabatic losses due to plasma outflow from the Galactic central regions are taken into account, then the re-acceleration model nicely reproduces the Planck datapoints.Comment: 33 pages, 8 figures, accepted by Ap

    The Origin of Gamma-Rays from Globular Clusters

    Get PDF
    Fermi has detected gamma-ray emission from eight globular clusters. We suggest that the gamma-ray emission from globular clusters may result from the inverse Compton scattering between relativistic electrons/positrons in the pulsar wind of MSPs in the globular clusters and background soft photons including cosmic microwave/relic photons, background star lights in the clusters, the galactic infrared photons and the galactic star lights. We show that the gamma-ray spectrum from 47 Tuc can be explained equally well by upward scattering of either the relic photons, the galactic infrared photons or the galactic star lights whereas the gamma-ray spectra from other seven globular clusters are best fitted by the upward scattering of either the galactic infrared photons or the galactic star lights. We also find that the observed gamma-ray luminosity is correlated better with the combined factor of the encounter rate and the background soft photon energy density. Therefore the inverse Compton scattering may also contribute to the observed gamma-ray emission from globular clusters detected by Fermi in addition to the standard curvature radiation process. Furthermore, we find that the emission region of high energy photons from globular cluster produced by inverse Compton scattering is substantially larger than the core of globular cluster with a radius >10pc. The diffuse radio and X-rays emitted from globular clusters can also be produced by synchrotron radiation and inverse Compton scattering respectively. We suggest that future observations including radio, X-rays, and gamma-rays with energy higher than 10 GeV and better angular resolution can provide better constraints for the models.Comment: Accepted by ApJ, Comments may send to Prof. K.S. Cheng: [email protected]

    The origin of the 6.4 keV line emission and H2_2 ionization in the diffuse molecular gas of the Galactic center region

    Get PDF
    We investigate the origin of the diffuse 6.4 keV line emission recently detected by Suzaku and the source of H_2ionization in the diffuse molecular gas of the Galactic Center (GC) region. We show that Fe atoms and H_2 molecules in the diffuse interstellar medium of the GC are not ionized by the same particles. The Fe atoms are most likely ionized by X-ray photons emitted by Sgr A* during a previous period of flaring activity of the supermassive black hole. The measured longitudinal intensity distribution of the diffuse 6.4 keV line emission is best explained if the past activity of Sgr A$* lasted at least several hundred years and released a mean 2-100 keV luminosity > 10^38} erg s^{-1}. The H_2 molecules of the diffuse gas can not be ionized by photons from Sgr A*, because soft photons are strongly absorbed in the interstellar gas around the central black hole. The molecular hydrogen in the GC region is most likely ionized by low-energy cosmic rays, probably protons rather than electrons, whose contribution into the diffuse 6.4 keV line emission is negligible.Comment: 5 pages, 4 figues, accepted for publication in the Astrophysical Journal Letter

    The Casimir effect for parallel plates at finite temperature in the presence of one fractal extra compactified dimension

    Full text link
    We discuss the Casimir effect for massless scalar fields subject to the Dirichlet boundary conditions on the parallel plates at finite temperature in the presence of one fractal extra compactified dimension. We obtain the Casimir energy density with the help of the regularization of multiple zeta function with one arbitrary exponent and further the renormalized Casimir energy density involving the thermal corrections. It is found that when the temperature is sufficiently high, the sign of the Casimir energy remains negative no matter how great the scale dimension δ\delta is within its allowed region. We derive and calculate the Casimir force between the parallel plates affected by the fractal additional compactified dimension and surrounding temperature. The stronger thermal influence leads the force to be stronger. The nature of the Casimir force keeps attractive.Comment: 14 pages, 2 figure
    • …
    corecore