1,037 research outputs found
Extracting joint weak values with local, single-particle measurements
Weak measurement is a new technique which allows one to describe the
evolution of postselected quantum systems. It appears to be useful for
resolving a variety of thorny quantum paradoxes, particularly when used to
study properties of pairs of particles. Unfortunately, such nonlocal or joint
observables often prove difficult to measure weakly in practice (for instance,
in optics -- a common testing ground for this technique -- strong photon-photon
interactions would be needed). Here we derive a general, experimentally
feasible, method for extracting these values from correlations between
single-particle observables.Comment: 6 page
Time-reversal and super-resolving phase measurements
We demonstrate phase super-resolution in the absence of entangled states. The
key insight is to use the inherent time-reversal symmetry of quantum mechanics:
our theory shows that it is possible to \emph{measure}, as opposed to prepare,
entangled states. Our approach is robust, requiring only photons that exhibit
classical interference: we experimentally demonstrate high-visibility phase
super-resolution with three, four, and six photons using a standard laser and
photon counters. Our six-photon experiment demonstrates the best phase
super-resolution yet reported with high visibility and resolution.Comment: 4 pages, 3 figure
Quantum computing on encrypted data
The ability to perform computations on encrypted data is a powerful tool for
protecting privacy. Recently, protocols to achieve this on classical computing
systems have been found. Here we present an efficient solution to the quantum
analogue of this problem that enables arbitrary quantum computations to be
carried out on encrypted quantum data. We prove that an untrusted server can
implement a universal set of quantum gates on encrypted quantum bits (qubits)
without learning any information about the inputs, while the client, knowing
the decryption key, can easily decrypt the results of the computation. We
experimentally demonstrate, using single photons and linear optics, the
encryption and decryption scheme on a set of gates sufficient for arbitrary
quantum computations. Because our protocol requires few extra resources
compared to other schemes it can be easily incorporated into the design of
future quantum servers. These results will play a key role in enabling the
development of secure distributed quantum systems
Full characterization of a three-photon GHZ state using quantum state tomography
We have performed the first experimental tomographic reconstruction of a
three-photon polarization state. Quantum state tomography is a powerful tool
for fully describing the density matrix of a quantum system. We measured 64
three-photon polarization correlations and used a "maximum-likelihood"
reconstruction method to reconstruct the GHZ state. The entanglement class has
been characterized using an entanglement witness operator and the maximum
predicted values for the Mermin inequality was extracted.Comment: 3 pages, 3 figure
Manipulating biphotonic qutrits
Quantum information carriers with higher dimension than the canonical qubit
offer significant advantages. However, manipulating such systems is extremely
difficult. We show how measurement induced non-linearities can be employed to
dramatically extend the range of possible transforms on biphotonic qutrits; the
three level quantum systems formed by the polarisation of two photons in the
same spatio-temporal mode. We fully characterise the biphoton-photon
entanglement that underpins our technique, thereby realising the first instance
of qubit-qutrit entanglement. We discuss an extension of our technique to
generate qutrit-qutrit entanglement and to manipulate any bosonic encoding of
quantum information.Comment: 4 pages, 4 figure
Water vapor radiometry research and development phase
This report describes the research and development phase for eight dual-channel water vapor radiometers constructed for the Crustal Dynamics Project at the Goddard Space Flight Center, Greenbelt, Maryland, and for the NASA Deep Space Network. These instruments were developed to demonstrate that the variable path delay imposed on microwave radio transmissions by atmospheric water vapor can be calibrated, particularly as this phenomenon affects very long baseline interferometry measurement systems. Water vapor radiometry technology can also be used in systems that involve moist air meteorology and propagation studies
Demonstration of a simple entangling optical gate and its use in Bell-state analysis
We demonstrate a new architecture for an optical entangling gate that is
significantly simpler than previous realisations, using partially-polarising
beamsplitters so that only a single optical mode-matching condition is
required. We demonstrate operation of a controlled-Z gate in both
continuous-wave and pulsed regimes of operation, fully characterising it in
each case using quantum process tomography. We also demonstrate a
fully-resolving, nondeterministic optical Bell-state analyser based on this
controlled-Z gate. This new architecture is ideally suited to guided optics
implementations of optical gates.Comment: 4 pages, 3 figures. v2: additional author, improved data and figures
(low res), some other minor changes. Accepted for publication in PR
- âŠ