27,528 research outputs found

    Hierarchical Mass Matrices in a Minimal SO(10) Grand Unification I

    Full text link
    We consider a minimal SO(10) unified model with horizontal Peccei-Quinn symmetry. The hierarchical structure of quark-lepton mass matrices is naturally implemented by the remnants of certain irrelevant terms. Georgi-Jarlskog relations are also realized due to the horizontal symmetry.Comment: phyzzx and tables, 15 pages, KUNS 125

    Nonlinearly Realized Extended Supergravity

    Full text link
    We provide nonlinear realization of supergravity with an arbitrary number of supersymmetries by means of coset construction. The number of gravitino degrees of freedom counts the number of supersymmetries, which will be possibly probed in future experiments. We also consider goldstino embedding in the construction to discuss the relation to nonlinear realization with rigid supersymmetries.Comment: 19 page

    Susceptibility of the Spin 1/2 Heisenberg Antiferromagnetic Chain

    Full text link
    Highly accurate results are presented for the susceptibility, χ(T)\chi (T) of the s=1/2s=1/2 Heisenberg antiferromagnetic chain for all temperatures, using the Bethe ansatz and field theory methods. After going through a rounded peak, χ(T)\chi (T) approaches its asympotic zero-temperature value with infinite slope.Comment: 8 pages and 3 postscript figures appended (uuencoded), Revtex, Report #:UBCTP-94-00

    Pre-K-Edge Structure on Anomalous X-Ray Scattering in LaMnO3

    Full text link
    We study the pre-K-edge structure of the resonant X-ray scattering for forbidden reflections (anomalous scattering) in LaMnO3, using the band calculation based on the local density approximation. We find a two-peak structure with an intensity approximately 1/100 of that of the main peak. This originates from a mixing of 4p states of Mn to 3d states of neighboring Mn sites. The effect is enhanced by an interference with the tail of the main peak. The effect of the quadrupole transition is found to be one order of magnitude smaller than that of the dipole transition, modifying slightly the azimuthal-angle dependence.Comment: 4 pages, 5 figures, submitted to J. Phys. Soc. Jp

    4p states and X-Ray Spectroscopy

    Full text link
    The 4p states in transition metals and their compounds usually play minor roles on their physical quantities. Recent development of resonant x-ray scattering (RXS) at the K-edge of transition metals, however, casts light on the 4p states, because the signals on orbital and magnetic superlattice spots are brought about by the modulation in the 4p states. The 4p states are extending in solids and thereby sensitive to electronic states at neighboring sites. This characteristic determines the mechanism of RXS that the intensity on the orbital superlattice spots are mainly generated by the lattice distortion and those on magnetic superlattice spots by the coupling of the 4p states with the orbital polarization in the 3d states at neighboring sites. Taking up typical examples for orbital and magnetic RXS, we demonstrate these mechanisms on the basis of the band structure calculation. Finally, we study the MCD spectra at the K-edge, demonstrating that the same mechanism as the magnetic RXS is working.Comment: 9 pages, 9 figures, submitted to Physica Scripta (comment

    Disturbances of both cometary and Earth's magnetospheres excited by single solar flares

    Get PDF
    In the solar wind a comet plays the role of a windvane that moves three-dimensionally in the heliomagnetosphere. Among the solar systems bodies, only comets have a wide range of inclination angles of their orbital planes to the ecliptic plane ranging from 0 to 90 deg. Therefore, observations of cometary plasma tails are useful in probing the heliomagnetospheric conditions in the high heliolatitudinal region. A comet can be compared to a polar-orbiting probe encircling the Sun. We will introduce two rare cases in which the magnetospheres of both the comet and the Earth are disturbed by a single solar flare
    • …
    corecore