6,330 research outputs found

    Effect of Sewage on Plasma Cortisol and Element Concentrations in Goldfish, Carassius auratus

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    Transport properties of double-walled carbon nanotube quantum dots

    Full text link
    The transport properties of quantum dot (QD) systems based on double-walled carbon nanotube (DWCNT) are investigated. The interplay between microscopic structure and strong Coulomb interaction is treated within a bosonization framework. The linear and nonlinear G-V-V_g characteristics of the QD system is calculated by starting from the Liouville equation for the reduced density matrix. Depending on the intershell couplings, an 8-electron periodicity of the Coulomb blockade peak spacing in the case of commensurate DWCNT QDs and a 4-electron periodicity in the incommensurate case are predicted. The contribution of excited states of DWCNTs to the nonlinear transport is investigated as well.Comment: 18 pages, 7 figure

    Glasslike vs. crystalline thermal conductivity in carrier-tuned Ba8Ga16X30 clathrates (X = Ge, Sn)

    Get PDF
    The present controversy over the origin of glasslike thermal conductivity observed in certain crystalline materials is addressed by studies on single-crystal x-ray diffraction, thermal conductivity k(T) and specific heat Cp(T) of carrier-tuned Ba8Ga16X30 (X = Ge, Sn) clathrates. These crystals show radically different low-temperature k(T) behaviors depending on whether their charge carriers are electrons or holes, displaying the usual crystalline peak in the former case and an anomalous glasslike plateau in the latter. In contrast, Cp(T) above 4 K and the general structural properties are essentially insensitive to carrier tuning. We analyze these combined results within the framework of a Tunneling/Resonant/Rayleigh scatterings model, and conclude that the evolution from crystalline to glasslike k(T) is accompanied by an increase both in the effective density of tunnelling states and in the resonant scattering level, while neither one of these contributions can solely account for the observed changes in the full temperature range. This suggests that the most relevant factor which determines crystalline or glasslike behavior is the coupling strength between the guest vibrational modes and the frameworks with different charge carriers.Comment: 8 pages, 4 figures, 4 tables, submitted to Phys. Rev.

    Distinct Fe-induced magnetic states in the underdoped and overdoped regimes of La2-xSrxCu1-yFeyO4 revealed by muon spin relaxation

    Full text link
    Zero-field and longitudinal-field muon-spin-relaxation measurements have been performed in partially Fe-substituted La2-xSrxCu1-yFeyO4 in a wide range of hole concentration, to investigate the magnetic state induced by the Fe substitution recently suggested from the neutron-scattering measurements [Phys. Rev. Lett. 107, 127002 (2011)]. It has been found that the magnetic transition temperature is notably enhanced through the 1% Fe substitution in a wide range of hole concentration where superconductivity appears in Fe-free La2-xSrxCuO4. In the underdoped regime, the Fe-induced magnetic order can be understood in terms of the concept of stripe pinning by Fe as in the case of the Zn-induced one in La2-xSrxCu1-yZnyO4. In the overdoped regime, on the other hand, the Fe-induced magnetic order is short-ranged, which is distinct from the stripes. It is plausible that a spin-glass state of Fe spins derived from the Ruderman-Kittel-Kasuya-Yosida interaction is realized in the overdoped regime, suggesting a change of the ground state from the strongly correlated state to the Fermi-liquid state with hole doping in La-214 high-Tc cuprates.Comment: 10 pages, 6 figures, accepted for publication in Phys. Rev.

    Resonant inelastic x-ray scattering in single-crystal superconducting PrFeAsO0.7

    Full text link
    Resonant inelastic x-ray scattering (RIXS) spectra at the Fe K-edge were measured for a single crystal of the iron oxypnictide superconductor PrFeAsO0.7 (Tc=42 K). They disclose a weak, broad feature centered around 4.5 eV energy loss, which is slightly resonantly enhanced when the incident energy is tuned in the vicinity of the 4p white line. We tentatively ascribe it to the charge-transfer excitation between As 4p and Fe 3d.Comment: 2 pages, 2 figure

    A New Reconfigurable Agricultural Vehicle Controlled by a User Graphical Interface: Mechanical and Electronic Aspects

    Get PDF
    The use of innovative mobile vehicles with increasingly advanced mechatronic aspects in the agricultural sector is becoming, in recent years, a stimulating field of research and comparison. In particular, the problem addressed in the present work refers to improving the locomotion of mobile vehicles on agricultural terrain by reducing the soil damage and improve the overall performance. Agricultural vehicles generally use tracks and wheels for locomotion; the main difference between the two systems is the contact area with the ground and, consequently, the pressure distribution. The present work presents a new reconfigurable agricultural vehicle that can switch from one locomotion system to another, choosing the suitable configuration according to the terrain conditions. All the mechanical and electronic aspects of the prototype developed are analyzed together with an in-depth analysis of the management of the innovative functions through a user-friendly graphical interface able to control the vehicle

    Temperature Response Comparison of Controlled and Field Environments for Four Tropical Grasses

    Get PDF
    Tropical grasses are cultivated mostly as annuals in the warm region of SW Japan. They have a long-term sowing time after harvesting temperate Italian ryegrass. We compared the early growth of tropical grasses in a controlled environment vs. field data at 2 sowing times to determine their temperate response

    Rigorous results on the local equilibrium kinetics of a protein folding model

    Full text link
    A local equilibrium approach for the kinetics of a simplified protein folding model, whose equilibrium thermodynamics is exactly solvable, was developed in [M. Zamparo and A. Pelizzola, Phys. Rev. Lett. 97, 068106 (2006)]. Important properties of this approach are (i) the free energy decreases with time, (ii) the exact equilibrium is recovered in the infinite time limit, (iii) the equilibration rate is an upper bound of the exact one and (iv) computational complexity is polynomial in the number of variables. Moreover, (v) this method is equivalent to another approximate approach to the kinetics: the path probability method. In this paper we give detailed rigorous proofs for the above results.Comment: 25 pages, RevTeX 4, to be published in JSTA

    Charmonium properties in deconfinement phase in anisotropic lattice QCD

    Get PDF
    J/Psi and eta_c above the QCD critical temperature T_c are studied in anisotropic quenched lattice QCD, considering whether the c\bar c systems above T_c are spatially compact (quasi-)bound states or scattering states. We adopt the standard Wilson gauge action and O(a)-improved Wilson quark action with renormalized anisotropy a_s/a_t =4.0 at \beta=6.10 on 16^3\times (14-26) lattices, which correspond to the spatial lattice volume V\equiv L^3\simeq(1.55{\rm fm})^3 and temperatures T\simeq(1.11-2.07)T_c. We investigate the c\bar c system above T_c from the temporal correlators with spatially-extended operators, where the overlap with the ground state is enhanced. To clarify whether compact charmonia survive in the deconfinement phase, we investigate spatial boundary-condition dependence of the energy of c\bar c systems above T_c. In fact, for low-lying S-wave c \bar c scattering states, it is expected that there appears a significant energy difference \Delta E \equiv E{\rm (APBC)}-E{\rm (PBC)}\simeq2\sqrt{m_c^2+3\pi^2/L^2}-2m_c (m_c: charm quark mass) between periodic and anti-periodic boundary conditions on the finite-volume lattice. In contrast, for compact charmonia, there is no significant energy difference between periodic and anti-periodic boundary conditions. As a lattice QCD result, almost no spatial boundary-condition dependence is observed for the energy of the c\bar c system in J/\Psi and \eta_c channels for T\simeq(1.11-2.07)T_c. This fact indicates that J/\Psi and \eta_c would survive as spatially compact c\bar c (quasi-)bound states below 2T_c. We also investigate a PP-wave channel at high temperature with maximally entropy method (MEM) and find no low-lying peak structure corresponding to \chi_{c1} at 1.62T_c.Comment: 13 pages, 11 figure
    corecore