15,475 research outputs found
On Binomial Ideals associated to Linear Codes
Recently, it was shown that a binary linear code can be associated to a
binomial ideal given as the sum of a toric ideal and a non-prime ideal. Since
then two different generalizations have been provided which coincide for the
binary case. In this paper, we establish some connections between the two
approaches. In particular, we show that the corresponding code ideals are
related by elimination. Finally, a new heuristic decoding method for linear
codes over prime fields is discussed using Gr\"obner bases
On the recombination in high-order harmonic generation in molecules
We show that the dependence of high-order harmonic generation (HHG) on the
molecular orientation can be understood within a theoretical treatment that
does not involve the strong field of the laser. The results for H_2 show
excellent agreement with time-dependent strong field calculations for model
molecules, and this motivates a prediction for the orientation dependence of
HHG from the N_2 3s_g valence orbital. For both molecules, we find that the
polarization of recombination photons is influenced by the molecular
orientation. The variations are particularly pronounced for the N_2 valence
orbital, which can be explained by the presence of atomic p-orbitals.Comment: 6 pages 7 figure
The probability distribution of a trapped Brownian particle in plane shear flows
We investigate the statistical properties of an over-damped Brownian particle
that is trapped by a harmonic potential and simultaneously exposed to a linear
shear flow or to a plane Poiseuille flow. Its probability distribution is
determined via the corresponding Smoluchowski equation, which is solved
analytically for a linear shear flow. In the case of a plane Poiseuille flow,
analytical approximations for the distribution are obtained by a perturbation
analysis and they are substantiated by numerical results. There is a good
agreement between the two approaches for a wide range of parameters.Comment: 5 pages, 4 figur
Perioperative infection prophylaxis and risk factor impact in colon surgery
Background: A prospective observational study was undertaken in 2,481 patients undergoing elective colon resection in 114 German centers to identify optimal drug and dosing modalities and risk factors for postoperative infection. Methods: Patients were pair matched using six risk factors and divided into 672 pairs (ceftriaxone vs, other cephalosporins, group A) and 400 pairs (ceftriaxone vs. penicillins, group B). End points were local and systemic postoperative infection and cost effectiveness. Results: Local infection rates were 6.0 versus 6.5% (group A) and 4.0 versus 10.5% (group B); systemic infection rates in groups A and B were 4.9 versus 6.3% and 3.3 versus 10.5%, respectively. Ceftriaxone was more effective than penicillins overall (6.8 vs. 17.8%, p < 0.001). Length of postoperative hospital stay was 16.2 versus 16.9 days (group A) and 15.8 versus 17.6 days (group B). Of the six risk factors, age and concomitant disease were significant for systemic infection, and blood loss, rectum resection and immunosuppressive therapy were significant for local infection. Penicillin was a risk factor compared to ceftriaxone (p < 0.0001). Ceftriaxone saved Q160.7 versus other cephalosporins and O416.2 versus penicillins. Conclusion: Clinical and microbiological efficacy are responsible for the cost effectiveness of ceftriaxone for perioperative prophylaxis in colorectal surgery. Copyright (C) 2000 S. Karger AG, Basel
Conversion efficiency and luminosity for gamma-proton colliders based on the LHC-CLIC or LHC-ILC QCD Explorer scheme
Gamma-proton collisions allow unprecedented investigations of the low x and
high regions in quantum chromodynamics. In this paper, we investigate
the luminosity for "ILC"LHC ( TeV) and
"CLIC"LHC ( TeV) based colliders. Also
we determine the laser properties required for high conversion efficiency.Comment: 16, 6 figure
High-resolution imaging of ultracold fermions in microscopically tailored optical potentials
We report on the local probing and preparation of an ultracold Fermi gas on
the length scale of one micrometer, i.e. of the order of the Fermi wavelength.
The essential tool of our experimental setup is a pair of identical,
high-resolution microscope objectives. One of the microscope objectives allows
local imaging of the trapped Fermi gas of 6Li atoms with a maximum resolution
of 660 nm, while the other enables the generation of arbitrary optical dipole
potentials on the same length scale. Employing a 2D acousto-optical deflector,
we demonstrate the formation of several trapping geometries including a tightly
focussed single optical dipole trap, a 4x4-site two-dimensional optical lattice
and a 8-site ring lattice configuration. Furthermore, we show the ability to
load and detect a small number of atoms in these trapping potentials. A site
separation of down to one micrometer in combination with the low mass of 6Li
results in tunneling rates which are sufficiently large for the implementation
of Hubbard-models with the designed geometries.Comment: 15 pages, 6 figure
Magnetic anisotropy terms in [110] MBE grown REFe2 films involving the strain term ???
The magnetic anisotropy parameters in [110] MBE grown films of REFe2 compounds are not the same as those in the bulk. This is due to the presence of a shear strain εxy, frozen in during crystal growth. In this paper, calculated magnetic anisotropy parameters for [110] MBE grown REFe2 films, that directly involve the shear strain εxy, are presented and discussed. In addition to the usual first order Callen and Callen term K˜'2, there are nine second order terms six of which involve cross terms between εxy and the cubic crystal field terms B4 and B6. Two of the second order cross terms are identified as being important: K˜"242(T) and K˜"262(T). Of these, the rank-two term K˜"242(T) dominates over a large temperature range. It has the same angular dependence as the first order term K˜'2, but with a more rapid temperature dependence. The correction at T = 0K for TbFe2, DyFe2, HoFe2, ErFe2, and TmFe2, amounts to ~+9.2%, -13.9%, -11.6%, +22.7%, and 27.1%, respectively. Similar comments are made concerning the rank-four K˜"264(T) term
Vibrationally resolved partial cross sections and asymmetry parameters for carbon K-shell photoionization of the CO_2 molecule
We have measured the vibrationally resolved partial cross sections \sigma_{v_1^{\prime}} and asymmetry parameters \beta_{v_1^{\prime}} for C K-shell photoionization of the CO2 molecule in the Σu shape resonance region above the C K-shell ionization threshold. The positions of both the maxima of \sigma_{v_1^{\prime}} and the minima of \beta_{v_1^{\prime}} move towards the C K-shell threshold with increasing symmetric stretching vibrational excitation v'1 in the C 1s single-hole state. Calculations employing the relaxed-core Hartree–Fock approach reproduce the observed vibrational effects
- …