5,518 research outputs found

    Construction of optimal witness for unknown two-qubit entanglement

    Full text link
    Whether entanglement in a state can be detected, distilled, and quantified without full state reconstruction is a fundamental open problem. We demonstrate a new scheme encompassing these three tasks for arbitrary two-qubit entanglement, by constructing the optimal entanglement witness for polarization-entangled mixed-state photon pairs without full state reconstruction. With better efficiency than quantum state tomography, the entanglement is maximally distilled by newly developed tunable polarization filters, and quantified by the expectation value of the witness, which equals the concurrence. This scheme is extendible to multiqubit Greenberger-Horne-Zeilinger entanglement.Comment: Phys. Rev. Lett. 105, 230404 (2010); supplementary information (OWitness_sup.pdf) is included in source zip fil

    The reverberation signatures of rotating disc winds in active galactic nuclei

    Full text link
    The broad emission lines (BELs) in active galactic nuclei (AGN) respond to ionizing continuum variations. The time and velocity dependence of their response depends on the structure of the broad-line region: its geometry, kinematics and ionization state. Here, we predict the reverberation signatures of BELs formed in rotating accretion disc winds. We use a Monte Carlo radiative transfer and ionization code to predict velocity-delay maps for representative high- (C IV~IV) and low-ionization (Hα\alpha) emission lines in both high- and moderate-luminosity AGN. Self-shielding, multiple scattering and the ionization structure of the outflows are all self-consistently taken into account, while small-scale structure in the outflow is modelled in the micro-clumping approximation. Our main findings are: (1) The velocity-delay maps of smooth/micro-clumped outflows often contain significant negative responses. (2)~The reverberation signatures of disc wind models tend to be rotation dominated and can even resemble the classic "red-leads-blue" inflow signature. (3) Traditional "blue-leads-red" outflow signatures can usually only be observed in the long-delay limit. (4) Our models predict lag-luminosity relationships similar to those inferred from observations, but systematically underpredict the observed centroid delays. (5) The ratio between "virial product" and black hole mass predicted by our models depends on viewing angle. Our results imply that considerable care needs to be taken in interpreting data obtained by observational reverberation mapping campaigns. In particular, basic signatures such as "red-leads-blue", "blue-leads-red" and "blue and red vary jointly" are not always reliable indicators of inflow, outflow or rotation. This may help to explain the perplexing diversity of such signatures seen in observational campaigns to date.Comment: 15 pages, 17 figures, 2 tables. Accepted by MNRAS 20/7/201

    A Simulation Model for Electron Irradiation Induced Specimen Charging in a Scanning Electron Microscope

    Get PDF
    A numerical model has been formulated to simulate the dynamics of specimen charging in a scanning electron microscope. In this model, the electric field due to imposed boundary conditions and fixed charges is solved by the finite element method. The empirical electron yield data are stored in Universal Yield Curves (UYC) . These UYCs control the generation of secondary and backscattered electrons from various materials. The electrons emitted from electron-solid interactions are tracked using a leapfrog integration scheme. Excess charges generated on the surface of electrically floating solids are assigned to numerical grids using a linear charge redistribution scheme. The validity of the simulation model was verified by measurements in a special setup which consisted of several isolated electrodes in the SEM chamber. Excess currents generated inside each electrode due to electron irradiation were measured simultaneously. Measurements and simulation results are in broad agreement and show that electrically floating electrodes, not directly irradiated by the primary beam, can charge-up if they are irradiated by secondary electrons and backscattered electrons emitted from a nearby electrode. The polarity of charge generation on the electrically floating solid depends on its own material property, and also strongly on the potential distribution in the space surrounding the floating electrode

    Towards unified understanding of conductance of stretched monatomic contacts

    Full text link
    When monatomic contacts are stretched, their conductance behaves in qualitatively different ways depending on their constituent atomic elements. Under a single assumption of resonance formation, we show that various conductance behavior can be understood in a unified way in terms of the response of the resonance to stretching. This analysis clarifies the crucial roles played by the number of valence electrons, charge neutrality, and orbital shapes.Comment: 2 figure

    Late-onset bloodstream infection and perturbed maturation of the gastrointestinal microbiota in premature infants

    Get PDF
    Late-onset bloodstream infection (LO-BSI) is a common complication of prematurity, and lack of timely diagnosis and treatment can have life-threatening consequences. We sought to identify clinical characteristics and microbial signatures in the gastrointestinal microbiota preceding diagnosis of LO-BSI in premature infants.Daily faecal samples and clinical data were collected over two years from 369 premature neonates (<32 weeks gestation). We analysed samples from 22 neonates who developed LO-BSI and 44 matched control infants. Next-generation sequencing of 16S rRNA gene regions amplified by PCR from total faecal DNA was used to characterise the microbiota of faecal samples preceding diagnosis from infants with LO-BSI and controls. Culture of selected samples was undertaken, and bacterial isolates identified using MALDI-TOF. Antibiograms from bloodstream and faecal isolates were compared to explore strain similarity.From the week prior to diagnosis, infants with LO-BSI had higher proportions of faecal aerobes/facultative anaerobes compared to controls. Risk factors for LO-BSI were identified by multivariate analysis. Enterobacteriaceal sepsis was associated with antecedent multiple lines, low birth weight and a faecal microbiota with prominent Enterobacteriaceae. Staphylococcal sepsis was associated with Staphylococcus OTU faecal over-abundance, and the number of days prior to diagnosis of mechanical ventilation and of the presence of centrally-placed lines. In 12 cases, the antibiogram of the bloodstream isolate matched that of a component of the faecal microbiota in the sample collected closest to diagnosis.The gastrointestinal tract is an important reservoir for LO-BSI organisms, pathogens translocating across the epithelial barrier. LO-BSI is associated with an aberrant microbiota, with abundant staphylococci and Enterobacteriaceae and a failure to mature towards predominance of obligate anaerobes

    A simple method to screen for azo-dye-degrading bacteria

    Get PDF
    A stab-culture method was adapted to screen for azo dyes-decolorizing bacteria from soil and water samples. Decolorized azo dye in the lower portion of the solid media indicates the presence of anaerobic azo dyes-decolorizing bacteria, while aerobic decolorizing bacteria decolorizes the surface portion of the solid media. Of twenty soil samples tested, one soil sample shows positive results for the decolourisation of two azo dyes; Biebrich scarlet (BS) and Direct blue 71 (DB) under anaerobic conditions. A gram negative and oxidase negative bacterial isolate was found to be the principal azo dyes degrader The isolate was identified by using the Biolog identification system as Serratia marcescens

    Expansion of patient eligibility for virtual glaucoma clinics: a long-term strategy to increase the capacity of high-quality glaucoma care

    Get PDF
    AIMS: The virtual glaucoma clinic (VGC) is a well-established diagnostic pathway for delivery of glaucoma care. Current UK national guidance recommends VGCs for patients with ocular hypertension, glaucoma suspects or early glaucoma. This study evaluates whether expanded eligibility criteria, including other glaucoma phenotypes and disease stages, can deliver safe and effective care with a positive patient experience. METHODS: Records of over 8000 patients were reviewed in order to determine suitability for VGC attendance using expanded eligibility criteria. Patients with three prior consecutive visits within the glaucoma service were included. Follow-up interval, clinic type, visual acuity (VA), intraocular pressure (IOP) and visual field performance were recorded. Patient satisfaction was recorded for a sample of 118 patients. RESULTS: 2017 patients over 31 months were included. Two-thirds of eyes had ocular comorbidities, a fifth of eyes had undergone prior cataract surgery and 10% of eyes had undergone a prior laser treatment for glaucoma. After three visits, 32% of patients remained in the VGC, 42% were seen in face-to-face clinics and 25% were discharged. There were no clinically significant changes in VA, IOP and visual field performance during follow-up. 72% of patients expressed a preference to continue their care within VGCs. CONCLUSIONS: This study demonstrates that VGCs with expanded patient eligibility criteria can deliver high-quality glaucoma care that is safe, effective and with high levels of patient satisfaction. This approach provides a long-term solution to adapt delivery of glaucoma care to our expanding and ageing population

    Quantum states in a magnetic anti-dot

    Full text link
    We study a new system in which electrons in two dimensions are confined by a non homogeneous magnetic field. The system consists of a heterostructure with on top of it a superconducting disk. We show that in this system electrons can be confined into a dot region. This magnetic anti-dot has the interesting property that the filling of the dot is a discrete function of the magnetic field. The circulating electron current inside and outside the anti-dot can be in opposite direction for certain bound states. And those states exhibit a diamagnetic to paramagnetic transition with increasing magnetic field. The absorption spectrum consists of many peaks, some of which violate Kohn's theorem, and which is due to the coupling of the center of mass motion with the other degrees of freedom.Comment: 6 pages, 12 ps figure

    Magnetic Quantum Dot: A Magnetic Transmission Barrier and Resonator

    Full text link
    We study the ballistic edge-channel transport in quantum wires with a magnetic quantum dot, which is formed by two different magnetic fields B^* and B_0 inside and outside the dot, respectively. We find that the electron states located near the dot and the scattering of edge channels by the dot strongly depend on whether B^* is parallel or antiparallel to B_0. For parallel fields, two-terminal conductance as a function of channel energy is quantized except for resonances, while, for antiparallel fields, it is not quantized and all channels can be completely reflected in some energy ranges. All these features are attributed to the characteristic magnetic confinements caused by nonuniform fields.Comment: 4 pages, 4 figures, to be published in Physical Review Letter
    corecore