19,150 research outputs found

    Resummations in Hot Scalar Electrodynamics

    Full text link
    The gauge-boson sector of perturbative scalar electrodynamics is investigated in detail as a testing ground for resummation methods in hot gauge theories. It also serves as a simple non-trivial reference system for the non-Abelian gluon plasma. The complete next-to-leading order contributions to the polarization tensor are obtained within the resummation scheme of Braaten and Pisarski. The simpler scheme proposed recently by Arnold and Espinosa is shown to apply to static quantities only, whereas Braaten-Pisarski resummation turns out to need modification for collective phenomena close to the light-cone. Finally, a recently proposed resummation of quasi-particle damping contributions is assessed critically.Comment: 53 p. LaTeX, 7 figs. (2 in LaTeX, 5 EPS appended as uu-encoded file), ITP-UH-01/94 & DESY 94-03

    On the metal-insulator transition in the two-chain model of correlated fermions

    Full text link
    The doping-induced metal-insulator transition in two-chain systems of correlated fermions is studied using a solvable limit of the t-J model and the fact that various strong- and weak-coupling limits of the two-chain model are in the same phase, i.e. have the same low-energy properties. It is shown that the Luttinger-liquid parameter K_\rho takes the universal value unity as the insulating state (half-filling) is approached, implying dominant d-type superconducting fluctuations, independently of the interaction strength. The crossover to insulating behavior of correlations as the transition is approached is discussed.Comment: 7 pages, 1 figur

    Human complement factor H

    Get PDF
    We isolated cDNA clones coding for the functionally important tryptic N-terminal38- kDa fragment of human complement control protein factor H using polyclonal and monoclonal antibodies to screen a human liver cDNA library cloned in a bacterial expression vector, PEX-1. By testing the reactivity of antibodies specific for the recombinant proteins produced by individual clones with proteolytic fragments of serum H the exact position of these cDNA clones within H was mapped. One clone, H-19, coding for the 38-kDa fragment of H was sequenced and found to code for 289 amino acids derived from the 38-kDa N-terminal fragment as well as for the first 108 amino acids belonging to the complementary 142-kDa tryptic fragment. The derived protein sequence could be arranged in 6 highly homologous repeats of about 60 amino acids each, the homology between the repeats being determined by the characteristic position of cysteine, proline, glycine, tyrosine and tryptophane residues. The region coding for the epitope recognized by one of our monoclonal antibodies was localized by subcloning restriction fragments of H-19 into the expression plasmid and testing for the expression of this epitope

    Weakly correlated electrons on a square lattice: a renormalization group theory

    Full text link
    We study the weakly interacting Hubbard model on the square lattice using a one-loop renormalization group approach. The transition temperature T_c between the metallic and (nearly) ordered states is found. In the parquet regime, (T_c >> |mu|), the dominant correlations at temperatures below T_c are antiferromagnetic while in the BCS regime (T_c << |mu|) at T_c the d-wave singlet pairing susceptibility is most divergent.Comment: 12 pages, REVTEX, 3 figures included, submitted to Phys. Rev. Let

    Finite-Temperature Charge-Ordering Transition and Fluctuation Effects in Quasi-One-Dimensional Electron Systems at Quarter Filling

    Full text link
    Finite-temperature charge-ordering phase transition in quasi one-dimensional (1D) molecular conductors is investigated theoretically, based on a quasi 1D extended Hubbard model at quarter filling with interchain Coulomb repulsion VV_\perp. The interchain term is treated within mean-field approximation whereas the 1D fluctuations in the chains are fully taken into account by the bosonization theory. Three regions are found depending on how the charge ordered state appears at finite temperature when VV_\perp is introduced: (i) weak-coupling region where the system transforms from a metal to a charge ordered insulator with finite transition temperature at a finite critical value of VV_\perp, (ii) an intermediate region where this transition occurs by infinitesimal VV_\perp due to the stability of inherent 1D fluctuation, and (iii) strong-coupling region where the charge ordered state is realized already in the purely 1D case, of which the transition temperature becomes finite with infinitesimal VV_\perp. Analytical formula for the VV_\perp dependence of the transition temperature is derived for each region.Comment: 4 pages, submitted to J. Phys. Soc. Jp

    A Frustrated 3-Dimensional Antiferromagnet: Stacked J1J2J_{1}-J_{2} Layers

    Full text link
    We study a frustrated 3D antiferromagnet of stacked J1J2J_1 - J_2 layers. The intermediate 'quantum spin liquid' phase, present in the 2D case, narrows with increasing interlayer coupling and vanishes at a triple point. Beyond this there is a direct first-order transition from N{\' e}el to columnar order. Possible applications to real materials are discussed.Comment: 11 pages,7 figure

    Renormalization of impurity scattering in one-dimensional interacting electron systems in magnetic field

    Full text link
    We study the renormalization of a single impurity potential in one-dimensional interacting electron systems in the presence of magnetic field. Using the bosonization technique and Bethe ansatz solutions, we determine the renormalization group flow diagram for the amplitudes of scattering of up- and down-spin electrons by the impurity in a quantum wire at low electron density and in the Hubbard model at less than half filling. In the absence of magnetic field the repulsive interactions are known to enhance backscattering and make the impurity potential impenetrable in the low-energy limit. On the contrary, we show that in a strong magnetic field the interaction may suppress the backscattering of majority-spin electrons by the impurity potential in the vicinity of the weak-potential fixed point. This implies that in a certain temperature range the impurity becomes almost transparent for the majority-spin electrons while it is impenetrable for the minority-spin ones. The impurity potential can thus have a strong spin-filtering effect.Comment: 11 pages, 2 figures; v2: a typo corrected and a reference added; v3: published version, Sec.II revised with an additional explanatory subsection, comments on the case of more than half-filling added, typos corrected, a reference update

    On the classifier performance for simulation based debris detection in sar imagery

    Get PDF
    Urban areas struck by disasters such as earthquakes are in need of a fast damage detection assessment. A post-event SAR image often is the first available image, most likely with no matching pre-event image to perform change detection. In previous work we have introduced a debris detection algorithm for this scenario that is trained exclusively with synthetically generated training data. A classification step is employed to separate debris from similar textures such as vegetation. In order to verify the use of a random forest classifier for this context, we conduct a performance comparison with two alternative popular classifiers, a support vector machine and a convolutional neural network. With the direct comparison revealing the random forest classifier to be best suited, the effective performance on the prospect of debris detection is investigated for the post-earthquake Christchurch scene. Results show a good separation of debris from vegetation and gravel, thus reducing the false alarm rate in the damage detection operation considerably

    Writing Across the Chemical Engineering Curriculum at the University of North Dakota

    Get PDF
    In Order to Prepare Engineering Graduates with the Written and Oral Communication Skills Needed in their Professional Careers a Coordinated Writing Across the Curriculum (WAC) Program Has Developed in the Chemical Engineering Department at the University of North Dakota. the Students Practice and Develop their Skills with Writing Assignments in Both Lecture and Laboratory Courses from the First‐year Level through the Fourth‐year Capstone Design Course. the Coordinated Approach, especially in the Four‐semester Laboratory Sequence, Allows the Students to Develop their Skills by Building on Communication Experiences in Previous Courses. the WAC Program at UND Including Writing and Public Speaking Assignments is Described. 1994 American Society for Engineering Educatio
    corecore