1,118 research outputs found

    Gravitational Properties of Monopole Spacetimes Near the Black Hole Threshold

    Full text link
    Although nonsingular spacetimes and those containing black holes are qualitatively quite different, there are continuous families of configurations that connect the two. In this paper we use self-gravitating monopole solutions as tools for investigating the transition between these two types of spacetimes. We show how causally distinct regions emerge as the black hole limit is achieved, even though the measurements made by an external observer vary continuously. We find that near-critical solutions have a naturally defined entropy, despite the absence of a true horizon, and that this has a clear connection with the Hawking-Bekenstein entropy. We find that certain classes of near-critical solutions display naked black hole behavior, although they are not truly black holes at all. Finally, we present a numerical simulation illustrating how an incident pulse of matter can induce the dynamical collapse of a monopole into an extremal black hole. We discuss the implications of this process for the third law of black hole thermodynamics.Comment: 23 pages, 4 figures RevTe

    Scaling of Star Polymers with one to 80 Arms

    Full text link
    We present large statistics simulations of 3-dimensional star polymers with up to f=80f=80 arms, and with up to 4000 monomers per arm for small values of ff. They were done for the Domb-Joyce model on the simple cubic lattice. This is a model with soft core exclusion which allows multiple occupancy of sites but punishes each same-site pair of monomers with a Boltzmann factor v<1v<1. We use this to allow all arms to be attached at the central site, and we use the `magic' value v=0.6v=0.6 to minimize corrections to scaling. The simulations are made with a very efficient chain growth algorithm with resampling, PERM, modified to allow simultaneous growth of all arms. This allows us to measure not only the swelling (as observed from the center-to-end distances), but also the partition sum. The latter gives very precise estimates of the critical exponents γf\gamma_f. For completeness we made also extensive simulations of linear (unbranched) polymers which give the best estimates for the exponent γ\gamma.Comment: 7 pages, 7 figure

    Weak gravity in DGP braneworld model

    Get PDF
    We analyze the weak gravity in the braneworld model proposed by Dvali-Gabadadze-Porrati, in which the unperturbed background spacetime is given by five dimensional Minkowski bulk with a brane which has the induced Einstein Hilbert term. This model has a critical length scale rcr_c. Naively, we expect that the four dimensional general relativity (4D GR) is approximately recovered at the scale below rcr_c. However, the simple linear perturbation does not work in this regime. Only recently the mechanism to recover 4D GR was clarified under the restriction to spherically symmetric configurations, and the leading correction to 4D GR was derived. Here, we develop an alternative formulation which can handle more general perturbations. We also generalize the model by adding bulk cosmological constant and the brane tension.Comment: 7 pages, 1 figure, references adde

    Star tracks in the ghost condensate

    Full text link
    We consider the infrared modification of gravity by ghost condensate. Naively, in this scenario one expects sizeable modification of gravity at distances of order 1000 km, provided that the characteristic time scale of the theory is of the order of the Hubble time. However, we argue that this is not the case. The main physical reason for the conspiracy is a simple fact that the Earth (and any other object in the Universe) has velocity of at least of order 10^{-3}c with respect to the rest frame of ghost condensate. Combined with strong retardation effects present in the ghost sector, this fact implies that no observable modification of the gravitational field of nearby objects occurs. Instead, the physical manifestation of ghost condensate is the presence of ``star tracks'' -- narrow regions of space with growing gravitational and ghost fields inside -- along the trajectory of any massive object. We briefly discuss the possibilities to observe these tracks.Comment: 20 pages, 2 figures, final version published in JCA

    The Accelerated Universe and the Moon

    Get PDF
    Cosmologically motivated theories that explain small acceleration rate of the Universe via modification of gravity at very large, horizon or super-horizon distances, can be tested by precision gravitational measurements at much shorter scales, such as the Earth-Moon distance. Contrary to the naive expectation the predicted corrections to the Einsteinian metric near gravitating sources are so significant that fall within sensitivity of the proposed Lunar Ranging experiments. The key reason for such corrections is the van Dam-Veltman-Zakharov discontinuity present in linearized versions of all such theories, and its subsequent absence at the non-linear level ala Vainshtein

    NMR and Mossbauer study of spin dynamics and electronic structure of Fe{2+x}V{1-x}Al and Fe2VGa

    Get PDF
    In order to assess the magnetic ordering process in Fe2VAl and the related material Fe2VGa, we have carried out nuclear magnetic resonance (NMR) and Mossbauer studies. 27Al NMR relaxation measurements covered the temperature range 4 -- 500 K in Fe(2+x)V(1-x)Al samples. We found a peak in the NMR spin-lattice relaxation rate, 27T1^-1, corresponding to the magnetic transitions in each of these samples. These peaks appear at 125 K, 17 K, and 165 K for x = 0.10, 0, and - 0.05 respectively, and we connect these features with critical slowing down of the localized antisite defects. Mossbauer measurements for Fe2VAl and Fe2VGa showed lines with no hyperfine splitting, and isomer shifts nearly identical to those of the corresponding sites in Fe3Al and Fe3Ga, respectively. We show that a model in which local band filling leads to magnetic regions in the samples, in addition to the localized antisite defects, can account for the observed magnetic ordering behavior.Comment: 5 pages, 3 figure

    Thermal properties of Lu 5 Ir 4 Si 10 near the charge-density-wave transition

    Get PDF
    We report the investigations of specific heat, thermal conductivity, as well as thermoelectric power on the charge-density-wave ͑CDW͒ compound Lu 5 Ir 4 Si 10 as a function of temperature. All thermal measurements consistently exhibit anomalous features around the CDW transition temperature T o ϳ80 K. Although the observations can be associated with the CDW formation, the measured anomalies are significantly large, in contrast to those in weak-coupled CDW materials. A quantitative analysis for the specific-heat data near the fluctuation region yields a critical exponent ␣ϳ2, much larger than the predicted value ␣ϭ0.5 in the extended mean-field theory assuming three-dimensional fluctuations. We also obtained a ratio ␥*/␥ϭ8.4, a factor of 6 larger than the BCS value 1.43 in the weak-coupling limit, indicating a strong coupling of this phase transition. Besides, the observed giant excess specific heat ⌬C p /C p ϳ26% and thermal conductivity ⌬/ϳ15% at T o further support this strong-coupling scenario. These large enhancements in C p and are attributed to the results of substantially thermal excitation and heat carried by the soft phonons at the transition. In addition, a rapid change in the sign of thermoelectric power at T o was observed, which provides a better understanding of the evolution of electronic band structure of the system below and above the CDW formation

    Exponential Metric Fields

    Full text link
    The Laser Interferometer Space Antenna (LISA) mission will use advanced technologies to achieve its science goals: the direct detection of gravitational waves, the observation of signals from compact (small and dense) stars as they spiral into black holes, the study of the role of massive black holes in galaxy evolution, the search for gravitational wave emission from the early Universe. The gravitational red-shift, the advance of the perihelion of Mercury, deflection of light and the time delay of radar signals are the classical tests in the first order of General Relativity (GR). However, LISA can possibly test Einstein's theories in the second order and perhaps, it will show some particular feature of non-linearity of gravitational interaction. In the present work we are seeking a method to construct theoretical templates that limit in the first order the tensorial structure of some metric fields, thus the non-linear terms are given by exponential functions of gravitational strength. The Newtonian limit obtained here, in the first order, is equivalent to GR.Comment: Accepted for publication in Astrophysics and Space Science, 17 page

    Introduction to half-metallic Heusler alloys: Electronic Structure and Magnetic Properties

    Full text link
    Intermetallic Heusler alloys are amongst the most attractive half-metallic systems due to the high Curie temperatures and the structural similarity to the binary semiconductors. In this review we present an overview of the basic electronic and magnetic properties of both Heusler families: the so-called half-Heusler alloys like NiMnSb and the the full-Heusler alloys like Co2_2MnGe. \textit{Ab-initio} results suggest that both the electronic and magnetic properties in these compounds are intrinsically related to the appearance of the minority-spin gap. The total spin magnetic moment MtM_t scales linearly with the number of the valence electrons ZtZ_t, such that Mt=Zt24M_t=Z_t-24 for the full-Heusler and Mt=Zt18M_t=Z_t-18 for the half-Heusler alloys, thus opening the way to engineer new half-metallic alloys with the desired magnetic properties.Comment: 28 pages, submitted for a special issue of 'Journal of Physics D: Applied Physics' on Heusler alloy

    Thermomagnetic hysteresis effects in NiMn and NiNnPd thin films

    Get PDF
    dc magnetization measurements, for zero-field cooled (MZFC) and field-cooled (MFC) cases, have been carried out for flash-evaporated Pd-doped NiMn thin films. These included reentrant phases (Ni76xPdx)Mn24, for 0x5, and Ni75Mn23Pd2, a pure spinglass phase. The studies were performed over the temperature range 3–300 K. Low-field magnetization measurements show the irreversibility effect (MZFC and MFC diverge at temperatures below the Curie temperature Tc . In Ni75Mn23Pd2, MZFC falls below MFC, as usually observed. However, in reentrant compositions, M ZFC crosses M FC upon warming into the ferromagnetic regime, where it stays above M FC at temperatures below Tc . This unusual behavior is attributed to a model of Imry and Ma in which, in a ferromagnet with antiferromagnetic impurities, the impurities can couple to the host ferromagnetic alignment and force the system to break into domains antiferromagnetically coupled to each other. Field-cooled hysteresis measurements indicate the uniaxial anisotropy in these samples to be small, in contrast with the rigid uniaxial anisotropy reported for the corresponding polycrystalline bulk samples. Since the lattice-orbit coupling is weak in the amorphous phase, this clearly demonstrates that the physical origin of the unidirectional anisotropy is associated with the spin-orbit coupling
    corecore